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Abstract--Similitude is a powerful tool which allows a small laboratory experiment at ambient conditions 
to simulate a much larger commercial fluidized bed. The scaling laws for bed dynamics and heat transfer 
are systematically developed from the fundamental relationships. Recent results demonstrate the validity 
of scaling and shed light on the key parameters which must be included in scaling. Simplified forms of 
the similitude relationships are identified. 
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1. D Y N A M I C  S I M U L A T I O N  OF F L U I D I Z A T I O N  

1. I. Introduction 

Fluidized beds are employed in a wide variety of  applications such as combustors of  dirty fuels, 
chemical reactors, ore roasters and coating applicators, to name a few. In many commercial 
applications the fluidized bed has a large diameter and height and operates at elevated temperature 
and pressure. To properly design a fluidized bed the fluid dynamics must be well understood since 
it directly influences the bed performance. For  example, in a bubbling fluidized bed, the size, 
frequency and distribution of  bubbles are directly linked to particle mixing and gas to solid 
contacting. A bed of  uniformly distributed fine bubbles will yield higher chemical conversion than 
a bed containing a few large bubbles concentrated at the center. The particle residence time in a 
circulating fluidized bed combustor has a strong influence on the combustion efficiency and the level 
of  pollutant emission. 

The dynamics of  a fluidized bed has been found to change as the bed size is increased. Designers 
are particularly concerned about the relationship between the performance of  large commercial 
beds and results obtained from much smaller pilot plants. There is a critical need to understand 
and predict the fluid dynamics of large fluidized beds. However, there is a dearth of  relevant 
information available in the field concerning large beds, particularly beds operating at high 
temperature and pressure. Because of the complexity of the multiphase phenomena, a theoretical 
solution for the bed behavior based on first principles remains a distant unfulfilled goal. There is 
a large body of  data and approximate analytical models based on results from small experimental 
beds. It is not obvious how this data can be applied to larger commercial designs. 

Detailed fluid dynamic investigations can be carried out more conveniently on small beds at 
ambient conditions. However, there must be a technique to confidently assure that these 
experimental results accurately duplicate conditions of  larger reactors. Similitude or dimensional 
analysis represents a powerful tool which will allow a small laboratory experiment at ambient 
conditions to simulate a much larger commercial bed. 

Similitude has been used in many fields to allow small controlled experiments to closely simulate 
physical phenomena. Wind tunnels are commonly used to determine the aerodynamic properties 
of  aircraft and automobiles. Towing tanks are used to judge the performance of proposed ship 
designs. Water tables are used to simulate the drainage and flow patterns of  large bodies of  water. 
Small scale models are used to determine the performance of  building structures in high winds or 
earthquakes. 

Within the last decade investigators have begun applying similitude principles to the study of  
fluidized bed dynamics. Large commercial fluidized bed combustors have been simulated using 
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smaller laboratory models to determine proper strategy for part load operation, identify possible 
causes of  erosion of in-bed surfaces and to determine heat transfer performance. The simulations 
have helped to identify parameters controlling bed dynamics and to investigate fundamental flow 
phenomena. Of particular note is the initiation of studies to determine the influence of increased 
bed size on performance: the scale up issue. 

Similitude is a powerful experimental tool which can aid the fluidized bed designer and 
researcher. However, the same maxim holds in this field as in computer programming, a less than 
careful application can yield useless output or worse, highly misleading design projections. Over 
its history the field of fluidization has its share of  model studies carried out without careful 
consideration of the similitude relations. Simply building and operating a model with the same 
geometric shape as the full scale bed will not lead to valid results. In some cases the particles used 
in the small scale ambient temperature model were identical to those used in the large scale high 
temperature bed! The results of such studies were less than illuminating. 

In this review the application of  similitude to fluidized beds will be surveyed. The scaling laws 
for bed dynamics and heat transfer will be systematically developed from the fundamental 
relationships. Recent results will be presented which demonstrate the validity of scaling and shed 
light on the key parameters which must be considered in scaling, as well as those which may be 
safely put aside. 

Similitude principles make it possible to build an experimental model which duplicates the 
performance of another bed. That bed may be a larger experimental model operated at the same 
pressure and temperature or it may be a large commercial bed or pilot plant operated at elevated 
temperature and/or pressure possibly with a different fluid and particle material. We will adopt the 
nomenclature of commercial bed or target bed being simulated and the term model or experimental 
model for the bed used to simulate the commercial bed. 

1.2.  E a r l y  W o r k  

The literature is replete with numerous parameters, dimensional and non-dimensional, to 
characterize the dynamics of  a fluidized bed. Wilhelm & Kwauk (1948) correlated the porosity with 
a modified Reynolds number based on minimum fluidization velocity as the parameter to 
distinguish between aggregative and particulate fluidization. Romero & Johanson (1962) non-di- 
mensionalized equations proposed by others for bed stability and showed the resulting dimension- 
less equations contained the dimensionless parameters: 

2 dp UmfPf H fls - -  flf Umf 

p f  ' g d p  ' p ' D ' 

where Ps is the solid density, pf is the fluid density, Umf is the minimum fluidization velocity, d o is 
the particle diameter, # is the fluid viscosity and H and D are the bed height and diameter, 
respectively. Wilhelm & Kwauk showed that a single new parameter based on the product of the 
above parameters did a better job of correlating the transition between aggregative and particulate 
fluidization than previous criteria which only used the Froude number. Note that, in general, these 
parameters may influence the bed characteristics in a more complicated form, i.e. as four 
independent parameters rather than combined in product form. In general, if umr is given by the 
Ergun equation, it can be shown that dpumfpf/]2 f is a function of (~mf, the voidage at minimum 
fluidization, ~b, the particle sphericity and the product (p~ - P r / P f ) "  gdp/u2mr • That is, aside from the 
geometric ratios there are only two independent parameters in Romero & Johanson's work. 

The Archimedes number has been used to correlate a wide array of  phenomena (Zabrodsky 
1966). 

Richardson & Zaki (1954) used the pi theorem combined with experimental results to obtain a 
relationship for the ratio of  settling velocity at infinite dilution to the superficial velocity as a 
function of  bed voidage, Reynolds number and ratio of particle to bed diameter. 

Baeyans & Geldart (1973) established a different set of parameters to characterize the fluidizing 
characteristics of particles which they demonstrated can be written in terms of dimensionless 
parameters. 

Broadhurst & Becker (1973) developed a list similar to that of Romero & Johanson except 
Broadhurst used the superficial velocity in place of the minimum fluidization velocity. The 
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dimensionless parameters were developed from the pi theorem. These parameters were used by 
Broadhurst & Becker to determine the criteria for minimum fluidization, the onset of bubbling and 
the onset of slugging. They found the solid to gas density ratio was an important correlating 
parameter for all three phenomena. 

None of these early investigators recognized the power of dimensional analysis to design 
experimental models which simulate the dynamics of larger units. 

2. DIMENSIONAL ANALYSIS AND SIMILARITY 

Dimensional analysis is a powerful technique, particularly in situations where the equations 
governing a physical problem are either unknown or not easily solved. Dimensional analysis 
reduces the number of independent parameters on which a physical problem depends; the 
independent parameters are those that affect the value of dependent variables. Each independent 
parameter can be set regardless of the values of the other independent parameters. Dimensional 
analysis is also useful for generalizing experimental results and aiding in their correlation. 
For example, dimensional analysis can be used to show how the friction factor (non-dimensional 
wall shear stress) in turbulent pipe flow is a function of Reynolds number and dimensionless 
roughness height, or similarly how the lift coefficient (non-dimensional lift force) for aerodynamic 
bodies depends on Reynolds number and angle of attack. There are a number of dimensional 
analysis techniques; Buckingham's pi theorem (Buckingham 1914) and the method of non-dimen- 
sionalizing the governing equations and boundary conditions (inspectional analysis) will be 
discussed. 

Experiments on a full-size commercial prototype are often prohibitively expensive and complex. 
One of the additional benefits of dimensional analysis is that it provides a way of properly scaling 
between a full-size prototype (target) and a laboratory scale model. By matching the important 
dimensionless parameters, which result from the dimensional analysis, between the model and the 
target prototype, dynamically similar behavior (similarity) will be achieved when it is expressed in 
the proper non-dimensional form. These laws make it possible to obtain useful information 
regarding the behavior of a full-size prototype using a properly scaled model. 

The convention established by Kline (1965) will be adopted here. The term variable is reserved 
for quantities which vary in space or time for a particular problem [e.g. position, x; time, t; or 
local velocity u(x, t)]. Parameters are quantities which are constant for a particular problem but 
can vary between two of the same type of problems; examples in fluidized bed systems are: 
superficial velocity, u0; particle diameter, dp; or solid density, Ps. Dependent variables such as 
u(x, t) are functions of independent variables, such as position and time, and the independent 
parameters. 

2.1. Dimensional Homogeneity 
The principle of dimensional homogeneity is one of the foundations of dimensional analysis. The 

principle can be stated as "If  an equation truely expresses a proper relationship between variables 
in a physical process, it will be dimensionally homogeneous; i.e. each of its additive terms will have 
the same dimensions" (White 1979). 

An example of a formula from the fluidization literature which lacks a general functional form 
due to dimensional difficulties is: 

f *  = 6.5 x 10 -3 Umf ~2 [1] 

The formula is an expression for the splitting frequency, f *  of a single rising bubble. The units 
o f f *  are s -~ and the units of umf are m/s, therefore the constant 6.5 x 10 -3 has units of m~2/s22. 
Although the expression is dimensionally homogeneous, due to the implicit dimensions of the 
constant, it cannot be a general relationship for a physical process since a quantity with dimensions 
of s-i cannot depend solely a parameter with the units of m/s. Based on dimensional considerations, 
at a minimum a length scale, such as the bubble diameter, is missing from the expression. Equations 
of this form are only applicable in the range of the data on which they are based; extrapolations 
outside this range could give spurious results. 
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2.2. Buckingham Pi Theorem 

Buckingham's pi theorem provides a simple method for forming the dimensionless parameters 
which govern a physical process. The resulting dimensionless parameters are the so-called pi 
groups. 

Buckingham's pi theorem states that if a physical process depends on n independent parameters, 
it can be simplified to a relationship between (n-k)  dimensionless parameters (pi groups), k is the 
number of dimensionally independent parameters which is less than or equal to the number of 
dimensions (e.g. M = mass, L = length, T = time) in the original n parameters. 

2.2.1. Buckingham pi theorem procedure 

The pi theorem is best demonstrated by an example; consider the case where the minimum 
fluidization velocity (Umf) is the dependent parameter. Buckingham pi reduces the dependence of 
the minimum fluidization velocity on the relevant independent parameters to its simplest form. 

The first step is to identify the complete set of dimensional independent parameters that are 
pertinent to the physical problem. It should be emphasized that the physics must be correct; if an 
important independent parameter is left out the dimensional analysis will fail. Similarly, spurious 
independent parameters unnecessarily complicate the results of the dimensional analysis and reduce 
its utility. Again, the independent parameters are those that affect the value of a dependent variable 
but do not affect each other. Typical examples include geometric design or input parameters which 
can be controlled independently of each other. In this particular example, it can be argued that 
the minimum fluidization velocity depends on the dominant forces on the particles and the particle 
geometry. We will assume that the dominant forces on the particles are: the force of buoyancy, 
proportional to [(ps - pf)g] and d 3, viscous forces (12) and fluid inertia forces (pf). Note that gravity 
appears combined with the difference in densities in the buoyancy term, not as a separate 
independent parameter. The particle geometry can be characterized by the mean particle diameter 
(dp), the minimum fluidization voidage (¢mr) and the particle sphericity (~b). Particle inertia, which 
would require the inclusion of Ps in the list of independent parameters, is assumed to be small for 
conditions near minimum fluidization. 

Umr =fcn {(Ps - Pr)g, 12, pfdp, £mf, q~ } [2] 

The next step is to list the dimensions of both the independent and the dependent parameters. 
The most common dimensions are mass (M), length (L) and time (T). In the case of the minimum 
fluidization velocity, 

A dimensionally independent 

[Umf ] = L/T [12] = M/LT 

[Pr]=M/L3 [dp]=L 

[41  = 1 

subset of the 

[(Ps -- Pf)g] = M/L2T2 

[emr] = 1 

[3] 

independent parameters must be specified; the 
dimensionally independent parameters are used to non-dimensionalize the remaining parameters. 
In order for the parameters to be dimensionally independent it should not be possible to construct 
a dimensionless parameter (pi group) from them. Typically, the number of dimensionally 
independent parameters is equal to the number of dimensions in the problem. Selecting pr(M/L3), 
12(M/LT) and dp(L) as the dimensionally independent parameters and non-dimensionalizing the 
remaining independent parameters and the dependent parameter using these gives: 

pfumfdr'l 2 - -  f c n  \((Ps- Pf)Pfg , Emf, (j~ ) [4] 

This can be written more concisely as, 

Remr = fcn(Ar, ¢mf, dp ) [5] 

where Remf is the Reynolds number based on /"/mr and Ar is the Archimedes number. 
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A functional form for this relationship is given by the Ergun equation at minimum fluidization 
conditions 

1.75 150(1 - £mr) Remf = Ar [6] 
E 3r---~ Re2mf + £mf¢ ~ 3 2  

Wen & Yu (1966a) assumed that Emf is only a function of ~ and showed that over a wide range 
of conditions 1/(~E If) and (1 - Emf) / (~)  2E 3f) are approximately constant. Solving for Remf , assuming 
that the coefficients are constant, gives 

Remf = x/C~ + C2 Ar - C~ [7] 

where Grace (1982) recommends values of 27.2 and 0.0408 for C~ and C2, respectively. 
This example illustrates the application of the Buckingham pi approach of dimensional analysis. 

It also shows how with additional physical insight into the problem simplifications are possible. 
If pf, Ps and g had been listed individually as independent parameters, which would have occurred 
if no additional physical insight had been used, two additional independent dimensionless 
parameters would have resulted. The larger the number of independent dimensionless parameters 
the more complicated the task of correlating experimental data. 

2.2.2. Application of Buckingham pi theorem to fluidized bed hydrodynamics 
The Buckingham pi procedure, presented in section 2.2.1, can be applied to determine the 

dimensionless groups which govern the hydrodynamic behavior of fluidized beds. If we take the 
pressure drop, AP, as the dependent parameter of interest we can use Buckingham pi to determine 
the independent dimensionless parameters on which it depends. 

To maintain generality we will resist the temptation to simplify and take the complete list of the 
independent parameters as: 

A P  = fcn(uo, g, D, L, dp, Ps, Pf,/g, t~) 

These parameters have the dimensions: 

[AP] = M/(LT 2) [u0] = L/T [g] = L/T 2 

[D] = L [L] = L [4] = 1 

Los] = M/L 3 Lof] = M/L 3 ~]  = M/(LT) 

Choosing u0, the superficial gas velocity (L/T), D(L) and pf (M/L 3) as the 

[81 

[9] 

dimensionally 
independent parameters and non-dimensionalizing the remaining parameters with these gives: 

' D pf" pfuo D pfu2o D '  ' ,~b [10] 

This set of dimensionless parameters is identical to the scaling laws developed by Glicksman (1984), 
which resulted from the non-dimensionalization of the Jackson (1971) equations of motion for 
fluidized beds. The number of non-dimensional independent parameters is fixed unless simplifica- 
tions can be justified, but they can be arbitrarily arranged in different forms. For example the 
Archimedes number when Ps >> Pf (which is common in gas fluidized beds) results from: 

Ar ,,~ ( ~ - - ~ ) :  • ( ~ )  • ( ~ )  • ( -~)  [11] 

It is important to note that Ar cannot be used to replace the three parameters, it can only be 
substituted for one such that the number of independent parameters remains the same. Simplifi- 
cations result from physical insight not mathematical manipulation. 

2.3. Non-dimensionalization of Governing Equations and Boundary Conditions 
The Buckingham pi approach to dimensional analysis quickly and easily produces a set of 

dimensionless parameters, but it provides no way of determining whether the initial list of 
independent parameters is complete. The method of non-dimensionalization of the governing 
equations and boundary conditions does not suffer from this limitation, but the governing 

MF 20/7 Sup~U 
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equations and boundary conditions must be able to be completely specified. The governing 
equations and boundary conditions contain all the pertinent independent parameters. The 
governing equations can also provide guidance as to when certain parameters dominate others such 
as when inertial effects dominate viscous effects or vice versa. 

The goal of non-dimensionalizing the governing equations is to normalize the equations such 
that each term is of order unity or less. This makes it possible to look at the order of magnitude 
of each term for a particular situation to determine when certain terms are negligible relative to 
others (referred to as order of magnitude or scale analysis). Order of magnitude analysis can also 
provide information regarding the functional form of the solution to the equation. Order of 
magnitude arguments are used, for example, to simplify the Navier-Stokes equations in the 
development of the boundary layer equations. Kline (1965) provides a detailed discussion on 
non-dimensionalizing the governing equations and boundary conditions. 

The first step in non-dimensionalizing the governing equations is to identify the scales of the 
problem (e.g. length, time and velocity). The scales should be such that dimensionless dependent 
variables in the equations and boundary conditions are of order unity. Use the scales of the problem 
to non-dimensionalize each term in the governing equations and boundary conditions. Finally, 
choose one of the coefficients of a term in each governing equation and boundary condition and 
divide each term in the equation or boundary condition by it. The resulting dimensionless 
coefficients of the terms in the normalized equations and boundary conditions are the relevant 
dimensionless independent parameters. Several examples of this method of dimensional analysis 
are presented in later sections. 

The more complete the governing equations and boundary conditions are the more exact the 
results of the dimensional analysis will be. It is important to realize the limitations of the governing 
equations, as for the Buckingham pi method: if all the important independent parameters are not 
included the dimensional analysis will be incomplete or it will fail. 

2.4. Similarity 
One of the benefits of dimensional analysis is that it provides the scaling laws between a model 

and a target prototype such that the two systems will exhibit dynamically similar behavior. 
Geometric similarity is a prerequisite to dynamic similarity. A model and a prototype are 

geometrically similar when all of their linear dimensions are related by a constant scale factor. They 
also must have the same shape (e.g. all angles must be preserved, etc.). In the fluidization example 
in section 2.2.2 the non-dimensional groups: L/D and dp/D are terms which would have to be 
matched between a model and a prototype to achieve geometric similarity. 

A model and a target prototype will exhibit dynamically similar behavior if they are geometri- 
cally similar and if all the values of the relevant independent dimensionless parameters are matched 
between the two. In terms of the Buckingham pi dimensional analysis, by matching all the 
independent pi groups the non-dimensional variables will be identical. Using the drag on an 
arbitrary body as an example, if the model and the prototype are geometrically similar and the 
Reynolds numbers of the flows over the two are identical, the drag, FD, on the target prototype 
is related to the drag on the model by 

F, ( p u 2 L 2 ) t  [121 
FD, = D. p--VFFm 

where m is for the model and t is for the commercial target prototype. In other words, the 
non-dimensional drag force of the model and the prototype are identical. 

Similarly, if the same dimensionless governing equations and boundary conditions govern both 
a full-size target prototype and a scale model, the dimensionless solution will be identical. 
Therefore, if the dimensionless parameters in the non-dimensional governing equations and 
boundary conditions are matched between the prototype and the model, they will exhibit similar 
behavior when it is expressed in non-dimensional form. 

Scaling of heat transfer in situations where the heat transfer depends on the fluid mechanics 
requires dynamic similarity in the fluid flows. In addition to hydrodynamic similarity, heat transfer 
scaling requires matching the relevant energy and property ratios. Buckingham pi and non-dimen- 
sionalization of the governing equations are equally applicable to heat transfer problems. 
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3. DEVELOPMENT OF DIMENSIONLESS SCALING LAWS 

The dimensionless parameters which control the modeling of a fluidized bed can either be derived 
from application of the Buckingham pi theorem or by the non-dimensionalization of the governing 
equations. Done properly, each method leads to the same result. The use of the governing equations 
has the merit of tying specific dimensionless parameters to particular physical phenomena 
(Glicksman 1984, 1988). If the proper equations can be written, even if they cannot be solved, they 
yield considerable insight into the process. 

Two approaches to the governing equations will be undertaken: using the equations of motion 
for individual particles and the equations of motion for a continuum model of fluids and solids 
phases. Early derivation of these dimensionless parameters was based on a continuum model 
(Scharff et al. 1978; Glicksman 1984). Inclusion of the individual particle approach extends the 
results to instances where a continuum model may not be applicable. 

The validity of the dimensional analysis depends on using equations which properly describe the 
physics and include all of the important effects. There are some aspects of the governing physics 
which are still controversial, in some cases the equations will be simplified when dealing with effects 
whose proper formulation is unknown or in dispute. Pragmatically, the current success of the 
scaling experiments using the formulation as presented adds confidence to the use of these 
simplifications. Also, a limited number of tests have verified the omission of several phenomena. 

For simplicity, the fluid will be considered incompressible although the results do not depend 
on this condition. The continuum equations will be developed similar to those given by Anderson 
& Jackson (1967). These equations are based on a continuum picture of the suspension of solids 
in the fluid. The solids and the fluid are considered individual phases and variables for each phase 
such as velocity of voidage are average values over regions large compared to a single particle but 
small compared to the scale of the macroscopic bed behavior. The derivation follows that given 
by Jackson (1971). 

For the fluid, conservation of mass is 

and for the solid phase, 

6£ 
c3t + div(Et/) = 0 [12a] 

dt (1 - E) + div[(1 - e)¢] = 0 [13a] 

where ff and ~ are the vectorial forms of the fluid and solid phase velocities, respectively. 
The equation of motion for the fluid can be written as, 

pfE ~-~-q-/2"V~ q--[pfg£--W'Ef-I-F=O [14a] 

while for the particle phase, 

o s ( l -E )  N + ~ . V ~  + 7 0 s g ( l - c ) - P - V . E p = 0  [15al 

where 7 is the unit vector in the vertical direction and the drag force between the fluid and the 
particle is represented by F. Er and Ep are the local average stress tensors associated with the fluid 
and particle phases, respectively. The proper formulation of the stress tensors is still a subject of 
controversy. The fluid to particle force term can be represented by a drag term proportional to 
the relative velocity between the two phases and a virtual mass term (CA is the added mass 
coefficient), 

~(a - ~) + (1 - E)CA 0f d (a -- ~) + (1 -- E)V- Ef [16al P =  

Note fl is in general not a constant, rather it must be found from a general expression for the drag 
force. 
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Given the uncertainty in the form of stress tensors, many authors have adopted a form analogous 
to single phase Newtonian fluid. For the fluid phase if incompressible, 

and for the solid, 

[ Ou~ Ouj'~ 
Efij = --P(~ij "-I'- ~.1 t-~x j -I- -~ixi ) [17a] 

[ Ovi Ovj'X 
E p i j =  --PpOij+#pt-~x2+~xi) [18a] 

where # is the fluid viscosity ~ is the effective viscosity of the particle phase. P is the fluid pressure 
and Pp is the local average pressure for the particle phase. 

The boundary conditions for the bed at the side wall with no net flow of particle across it are 
at 

x=O,D 

Vnormal = 0 ,  [19a]  

where this is the solids velocity normal to the wall. 
At the bottom 

at y = 0 

Gs [20a] 
V"°r~al = ps(1 -- E) 

where G, is the average solids feed rate per unit area from outside the bed through the bottom. 
This form holds when the solids feed is uniformly distributed over the bottom. If solids feed takes 
place along the side wall an expression similar to [20a] must be used in place of [19a]. 

For gas velocity, 

at x=O,D iT=0 [21a] 

at y = 0  

= 7u0/A above the distribution holes 

= 0 elsewhere [22a] 

where A is the voidage of the distribution plate assumed to be a perforated plane in this case and 
u0 is the superficial gas velocity. For bubble caps or other gas inlet devices, boundary conditions 
such as [22a] apply over the gas inlet plane of the device. Boundary conditions [19a] and [21a] also 
apply to the surfaces of any internal elements in the bed. For example heat transfer tubes. 

At all xs, ys (internal surfaces) 

t~=0, v N=0 [23a] 

Also at the distributor 

a t y = 0  

P=Po 
Non-dimensionalizing the variables as, 

O 
~7'=--, t~ '=--  

U0 U0 

V' =LV,  

[24a1 

t ' U0 =~- t  
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X 
x t ..~_ m 

L 

y '  = Y [25] 
L 

where L is a typical bed dimension, e.g. the bed height or diameter. Note that u', v', as well as 
E are dependent variables of  x' ,  y '  and t '  which are determined by the boundary conditions and 
the independent dimensionless parameters of the governing equations. 

Applying these definitions to the governing equations and rearranging them so the parameters 
form non-dimensional groups, the continuity equations become, 

& 
at---; + div(a~') [12b] 

and 

a 
~-~ (1 - E') + div[(1 - E)~'] = 0 [13b] 

The equations of  motion in dimensionless form are, 

,.,, ,] _ g L  Ef L$' ro,, o,.,,u v ' . - -  = - .-I- ..~-77.~.: 0 E La r + pfu2 pfuo 

and 

+ E pf L F  Pf V" Ep 
(1 - ~) [_at" . V,~, 1 . 7gL . .  

The fluid-particle interaction force becomes, 

LP_  ~L (a, E)CAd (c,, ~')+ 
pfu2o - pruo - e') + (1 - - (1 - ~)V'- - -  

p,u~ Lp,U~o- LmuokaX; - axU l  

Z.Ij FP.~ij~_ .p ( a V ;  av;\l 
pfU2 "~- L P 'u2 LPfu0 kaX; "}" 

The dimensionless boundary conditions become, 

zf 
pru 2 

[14b] 

[15b] 

[16b] 

[17b] 

[18b] 

at x ' = O , D / L  

t 
V normal = 0 

at y ' = O  

t 
V normal  ~ 

psu0 (1 --E) 

D 
at x = O, L 

[19b] 

[20b] 

a t y = O  

At all internal surfaces x~, y~ 

t l ' = O  

~" = i# /A above distribution holes 

tY = 0 elsewhere 

[21b] 

[22b] 

at  

# tY=O, vN=O 

y'=0 p,=P0 
pfu 2 

[23b] 

[24b] 
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3.1. Fluid-Solid and Interparticle Forces 

The drag coefficient fl can be expressed in several different limiting forms depending on the flow 
conditions. At low voidages typical of bubbling beds, the Ergun relationship or similar form can 
be used. In that case fl can be expressed as, 

flL~Os= 150~(1 - E )  2 #L (1 - -e) l~ ' - -~ ' lE2Lpf  
+ 1.75 [26] 

psUo E 3 psuoqgdpdp E 3 dp Ps 

In the limit of very high voidage, the drag coefficient can be related to the single particle drag 
coefficient. For the case of spherical particles, 

flL 3 Pr L 
= ~ CD[~7' -- ~'[f(e) [27] 

p Vo psa, 
where the drag coefficient, CD, in turn can be expressed in the form of 

In the more general case Co will also be a function of particle shape, sphericity, surface roughness 
and turbulence intensity of the fluid. The t e r m  Po/pfu~ can be ignored when the fluid velocity is 
small compared to sonic velocity or the absolute pressure does not change enough to influence the 
thermodynamic properties of the fluid; it will be ignored in this development. Note that the fluid 
pressure level still influences the fluid density. 

From the continuity and momentum equations for the fluid and solid phases along with the 
boundary conditions the following groups of independent dimensionless parameters are found to 
control the hydrodynamics, 

U2 Ps L/~ I f  Ep G s [29] 

gL ' Pr' pru~ ' pfu2o ' pru2o ' psuo 

along with the dimensionless coordinates of the boundaries and internal surfaces. The parameters 
containing F, Er and E o can be obtained, in principle, from [16b], [17b] and [18b] yielding 

u 2 ps flL # Pp #p 
. . . .  2, [301 

gL pf p~uo Lpruo pfuo Lpruo 

as well as bed geometry. 
The dimensionless fluid pressure is not included since it is a dependent parameter. The 

dimensionless drag coefficient flL/p~uo can be expressed in terms of other fluid parameters by the 
use of [26] or [27] and [28]. For low voidages where the Ergun like expression holds, 

[3L =fFpsuod2q~2 L Pfl [31] 

p ,  uo L #L ' 

while at high voidage, using [26] and [27], 

Ps U0 , ~o or shape, roughness, fluid turbulence [32] 

The physical basis of the particle phase pressure and viscosity still has not been resolved in the 
fluidization literature. In particular, dealing with stability between minimum fluidization and 
minimum bubbling, some investigators have considered interparticle forces as purely hydrodyn- 
amic, such as Foscolo & Gibilaro (1984) and Batchelor (1988), while others contend that the 
interparticle forces, are due to phenomena such as electrostatic or van der Waals forces (Rietema 
& Piepers 1990; Rieetma et al. 1993). For very fine particles, particle to particle cohesive forces 
are recognized as influencing the point of bubbling for gas fluidized beds (Baeyans & Geldart 1973). 

For larger particles, the nature of interparticle forces is still unresolved. Well beyond the point 
of minimum bubbling, a typical operating condition for most commercial gas solid beds, it might 
be expected that electrostatic or van der Waals forces are not as important as they are near the 
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point of minimum fluidization. It is likely that particle-particle collisions, dependent on the 
coefficient of restitution and sliding friction, come into play at much higher Uo/Umf. 

Given the lack of concensus concerning the nature and importance of interparticle interactions 
and the lack of an accepted quantitative form to express the non-hydrodynamic particle-particle 
interactive forces, such terms will not be considered further in this development. Foscolo et al. 
(1990) have shown that if the interparticle forces are hydrodynamic in nature the dimensionless 
parameters obtained are identical to those obtained by neglecting interparticle interaction. The 
success of scaling experiments for bubbling and circulating beds, which to date has been based on 
parameters omitting the interparticle interactions, suggest that in the range of parameters 
investigated, such an omission is valid. 

3.2. Experimental Investigations of Interpart&le Forces 

An experimental investigation was carried out by Litka & Glicksman (1985) to determine the 
influence of particle mechanical properties on the dynamics of a bubbling fluidized bed. They 
compared the behavior of beds fluidized with two kinds of particles with identical properties save 
one. In one test, particles of the same density, size, sphericity but different coefficients of restitution 
were compared. In the second series of tests, smooth and frosted glass particles with two different 
coefficients of sliding friction were compared. In each series of tests, beds with two different 
particles were found to have the same bubble frequency and size at a given height and a given 
u0 - u,~f. The beds also exhibited identical vertical particle dispersion, measured by following heated 
particles within the cold bed. The only exception was the particle with the higher coefficient of 
friction which exhibited a modest increase in Emf and Umr. Figures 1 and 2 show a comparison of 
bubble size and verticle particle delay time for one series of tests. Thus, over those tests conditions 
the two mechanical properties had a negligible influence on the bed dynamics. Since van der Waals 
forces involve short range interactions, changes in the roughness should produce different contact 
profiles and noticeable changes in bed behavior of such forces are important. The lack of 
substantial observable effects suggests the contrary conclusion for modest or large particles. 

Chang & Louge (1992) carried out scaling tests in a circulating fluidized bed. They found that 
coated glass powders with an artificially low surface friction and possibly a different coefficient of 
restitution gave a substantially different vertical solid density distribution in the column than a bed 
of common glass powder. The authors conclude that for typical materials with friction coefficients 
larger than the specially treated powders variations of friction coefficients are expected to have only 
a minor influence on fluid mechanics. Chang & Louge also report an observation shared by the 
current authors, circulating beds operated without anti-static treatment in dry air can exhibit 
substantial variations in flow behavior due to electrostatic charges built up on the particles (and 
sometimes accompanied by severe electrical discharges which damaged test electronics). The 
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Figure I. Mean bubble chord length vs excess velocity, frosted and smooth glass particles of the same 
diameter, density and sphericity, coefficient of sliding friction 0.21 and 0.12, respectively. 
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electrostatic effects are not expected to be present in commercial processes at elevated temperature 
where the fluidizing gas is more conductive. With proper precautions in ambient temperature beds, 
this phenomenon has been found to be of  negligible influence on the bed dynamics. 

Most available evidence suggests that particle mechanical properties related to interparticle 
collisions and electrostatic forces can be omitted. Although this is far from conclusive over a wide 
range of  conditions, it will be adopted in this treatment. Note that interparticle collisions are not 
totally omitted from the parameters in this consideration. For  collisions governed by relative 
particle velocity, size and density, but not variations in the mechanical properties, e.g. perfectly 
elastic or perfectly inelastic collisions, the set of  non-dimensional parameters developed below will 
still give similar behavior. 

3.3. Dimensionless Parameters 
Simplifying the non-dimensionalization by neglecting interparticle forces which are represen- 

ted by the particle pressure and effective viscosity in [29] the list of  dimensionless parameters 
becomes, 

I u~ Ps flL pruL Gs , bed geometry] [33] 
g - Z '  f l f '  f l s U 0 '  ].Lf f lsU0 

When the drag coefficient can be described by a Ergun-like expression, then flL/psuo is, in turn, 
a function of ps uo (dp qg)dp q~/~L and L/q~dp. In this expression dp represents the mean diameter when 
a distribution of  different size particles are in the bed. 

Traditionally, the mean diameter is defined as the surface area average mean. Although this 
mean may be appropriate for flow resistance primarily due to surface shear forces, it is not 
the proper choice for drag which prevails at higher particle Reynolds numbers (nor is it the 
obvious choice for a mean diameter to use with bed to surface heat or mass transfer). It is 
more general to include along with the mean particle diameter, the particle size distribution, 
with the particle size non-dimensionalized with respect to the mean diameter and the 
particle sphericity. To be more exact, the particle aspect ratio and surface roughness should 
be included at high particle Reynolds numbers. By use of  isotropic material with common 
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roughness levels these last two parameters can be overlooked. The set of independent dimensionless 
parameters becomes, 

U2 Ps psuod2tp 2 pfuoL Gs 
bed geometry, rp, particle size distribution (PSD) [34] 

gL ' pr ' I~L ' #f 'psu0' 

These can be rearranged by combination of parameters, it must be borne in mind that such 
manipulation by itself does not lead to any decrease in the number of dimensionless parameters. 
One such modification is, 

U2o ps p~uod v ptuoL Gs bed geometry, ~p, PSD [35] 
gL ' pf' ~ ' # ' psu o' 

In this form u2/gL the Froude number can be viewed as a ratio of inertial to gravity forces; pJpf 
is a ratio of particle to fluid inertial forces; p~uodp/# is the Reynolds number or ratio of particle 
inertial to fluid viscous forces; and pfuoL/# is a Reynolds number based on the bed dimensions 
and fluid density or ratio of fluid inertial to viscous forces. 

Another common form is obtained by combining the Froude and Reynolds numbers to obtain 
the Archimedes number, which omits u0, 

pfp~d~g (pfuodp~3gL( #f '~(p~ [361 
=\  ,r )u0 \p - o-oZoLJk?f/ 

The list of dimensionless parameters can be rewritten as, 

Pfpsd~g Ps u2 pfuoL G s 
' ' g L '  , , bed geometry, tp, PSD [37] 

I t2 Pr I ~ psUo 

Note that there is nothing more "fundamental" about one form compared to the others. Each has 
the same number of dimensionless groups which are made up of independent parameters which 
can be set by the bed design and operation and the choice of particles. However, when the number 
of dimensionless groups is simplified by omitting some phenomena, the reduction in number of 
groups could be influenced by the form chosen. 

3.4. Scaling Law Derivation of Horio for Circulating Fluidized Beds (1989) 

The most dramatic departure from the above procedure for derivation of scaling laws is that 
of Horio (1989). Horio has presented a scaling law for CFBs which is based on the clustering 
annular flow model (CAFM) of Ishii (1989). The CAFM describes the flow in a CFB as particle 
clusters moving upward in the core and downward in the annulus at the wall. The analysis was 
similar to that of Nakamura & Capes (1973). Completeness of the model was achieved by assuming 
minimization of pressure gradient. 

Horio's scaling law derivation was based on the requirement that two similar CFBs have equal 
values of: 

(1) voidage distribution; 
(2) dimensionless core radius; 
(3) gas splitting to core and annulus; 
(4) solid splitting to core and annulus; 
(5) cluster voidage. 

The CAFM equations were then examined to determine how these requirements could be met. 
Questions as to the validity of the theory supporting Horio's development are based on 

deficiencies of the CAFM to fully describe CFB flow and the lack of justification for the premise 
that the five characteristics listed above comprise all that is of interest in a CFB. In particular, the 
assumption of pressure drop minimization, although convenient, is not justified physically (Hyre 
& Glicksman 1994). 

The scaling law proposed by Horio for CFBs discussed above can be shown to be equivalent 
to the simplified set of parameters discussed in section 6. Horio also discussed simplifications to 
his list of scaling parameters in which the solid/gas density ratio is omitted. He claimed that this 
simplified scaling law is sufficient for "macroscopic similarity" and sacrifices only cluster size 
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similarity. This simplified law is identical to the bubbling bed scaling law developed by Horio (1986) 
and has been shown by Glicksman (1988) to be equivalent to the viscous limit scaling law. Horio's 
suggestion, that the density ratio can be neglected because sacrificing cluster size does not 
necessarily alter the macroscopic behavior of a CFB, is somewhat curious since his development 
is based on the CAFM which assumes clusters are the primary mechanism of particle transport. 
As will be shown in section 6, density ratio is not a parameter which can be omitted when scaling 
CFBs. 

3.5. An Alternative Evaluation of Fluidized Bed Similarity--Deterministic Chaos and the 
Kolmogorov Entropy 

Recent studies have indicated that fluidized beds may be deterministic chaotic systems (Daw et 
al. 1990; Daw & Harlow 1991; Schouten & van den Bleek 1991; van den Bleek & Schouten 1993). 
Such systems are characterized by a limited ability to predict their evolution with time. If beds are 
deterministic chaotic systems, the scaling laws should reflect the restricted predictability associated 
with such systems. 

Van den Bleek & Schouten (1993) have suggested that if two beds are properly scaled, the 
rate of information change in both systems will be the same. They suggest that two scaled beds 
will exhibit the same Kolmogorov entropy, or information generation rate, when measured on the 
same time scale. Hence, they adopt an additional method for verifying dynamic similarity requiring 
that the information group, Kt, to remain constant (where t = dp/uo and K is the Kolmogorov 
entropy). 

If fluidized beds are indeed chaotic, it would be impossible to match values of K(dp/uo) exactly 
by using the scaling parameters described above because chaotic systems are very sensitive to 
parameter settings. Van den Bleek & Schouten (1993) propose that the dimensionless information 
group be used as a tool to make the dynamic conditions in two scaled reactors similar by influencing 
the dependent parameter K through slight changes in one or more independent parameters. For 
example, the bed superficial velocity could be modified slightly to match K(dp/uo). 

Further work is needed to determine in which regimes, if any, fluid beds behave as chaotic 
systems. Moreover, additional testing is required to evaluate the sensitivity of the Kolmogorov 
entropy to system parameters, and how well the dimensionless information group is matched in 
beds which exhibit similar behavior as determined by the more common methods of evaluating 
dynamic similarity. 

4. DEVELOPMENT OF THE SCALING LAWS USING THE SINGLE PARTICLE 
EQUATION OF MOTION 

In dilute regions of CFBs and in the freeboard of bubbling beds, gas/solid hydrodynamics may 
be best represented as individual particles interacting with a turbulent fluid. If this is the case, the 
assumption of a continuum for the mass of particles in the bed implicit in the Anderson-Jackson 
equations of motion will not be valid. To investigate the governing hydrodynamic parameters of 
a particle suspended in homogeneous or wall bounded turbulence, we will write the equation of 
motion for an individual particle in its entirety. The equation will then be non-dimensionalized to 
determine the controlling dimensionless parameters. 

A particle suspended in a turbulent fluid responds to the random fluid velocity. Calculations 
presented in the literature relating the turbulence characteristics of particle motion to the turbulence 
characteristics of the fluid have been based on Tchen's (1947) equation of motion or on Maxey 
& Riley's (1983) equation. These relations include the effects of the Stokes drag, the body force, 
the Basset history force and the forces due to added mass and local fluid acceleration. Faxen terms 
which account for local curvature of the velocity field are also included in Maxey & Riley's 
equation. 

4.1. Core Region of a CFB or Freeboard of a Bubbling Bed 

In the core region of a CFB or freeboard of a bubbling bed where particles are far from the 
wall, the turbulence can be approximated as unbounded and homogeneous. Maxey & Riley gave 
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the following equation of motion for a sufficiently small spherical particle suspended in unbounded 
homogeneous turbulence: 

[381 

The Eulerian fluid velocity at 2 is denoted by z+, t) and the Lagrangian position and velocity of 
the particle are denoted by F(t) and f(t), respectively. The fluid velocity seen by the particle is 
tlP = ti(?(t), t). It is assumed to have zero mean, or the coordinate system is assumed to be moving 
with a mean fluid velocity that is uniform in space. 

The terms on the right-hand side of [38] are the gravitational force (minus the buoyancy force), 
the Stokes drag, the Basset history force, the force due to added mass and the force resulting from 
stress gradients of the fluid flow in the absence of a particle. The added mass term is expressed 
in terms of the time derivative seen by the particle as it moves through trajectory d/dt. The term 
defining the influence of fluid stress-gradients on the particle is expressed in terms of the change 
in fluid velocity along its own trajectory. 

The validity of the Maxey-Riley equation of motion is subject to the following limitations: 

d&j -4) < 1 
V 

For typical velocities, particle sizes and fluid properties found in fluidized beds, inequalities [40] 
and [41] certainly hold. However, inequality [39] may not be satisfied. For a CFB operating at 
800°C with a mean particle diameter of 250 pm the left hand side of the inequality is about 2.5. 
In other words, the particle Reynolds number based on relative velocity is finite for the particle 
flows found in fluidized beds. This indicates that the advective terms in the equation of motion 
cannot be ignored such that the problem reduces to one of unsteady Stokes flow. Based on the 
work of Odar & Hamilton (1964), Berlemont et al. (1990) modified the Maxey-Riley equation to 
take into account non-small Reynolds numbers. Their equation is 

& dfi X(P, - pr>d;i 
6 dt= 

~P,CDd; 
6 -8 

(a-li,-~d:P”p).Id--%I 

nd3P,C, d _ -l__(v _~p_~d:V2~p)+Xd:P’DPp -- 
6 6 Dt ~421 

The only difference between the Maxey-Riley equation and the Berlemont equation is the 
coefficients CD, CA and C,, which take into account non-small particle Reynolds numbers and 
particle acceleration. CA+ l/2, C,,+24/Reg and C,+6 for flows where Re+,, and particle 
convective acceleration approach zero. This limit results in the Maxey-Riley equation. 

Some words are appropriate at this point concerning the form of the equation of motion 
described above. In general, corrections of the form introduced by Odar & Hamilton (1964) and 
Berlemont et al. (1990) are not entirely valid. This is because the entire integration kernel associated 
with the Basset history term changes due to the non-linearity of a system with velocity oscillations 
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in the free stream and finite Reynolds numbers. The integration kernel decays at a greater rate than 
the classical behavior of (t - ~)~/2 for longer timescales (Mei & Adrian 1992; Mei et al. 1991b; 
Lovalenti & Brady 1993a, b, c). 

Recent investigations into a more exact form of the hydrodynamic forces in unsteady motion 
have indicated that the hydrodynamic force will also depend on a Strouhal number. If the 
characteristic timescale, L, is D/u (where u ,  is the shear velocity), the Strouhal number scales as 
dp/D. If the characteristic timescale is v/u2,, the Strouhal number scales as Reap., . 

Neither timescale introduces additional dimensionless parameters. Therefore, while not strictly 
valid for long timescales, [42] provides a good approximation of particle motion without the loss 
of any dimensionless groups. 

Many effects are neglected in [42]. The sphere is assumed to be isolated and far from any 
boundary so that particle-particle interactions and particle-boundary interactions can be excluded. 
This requires that the distance from the nearest particle or boundary is much larger than the particle 
radius. Effects of particle rotation and lateral forces due to the shear of the undisturbed flow are 
also not included. In addition, electrostatic forces are ignored. 

4.2. Non-dimensionalizing the Equation of Motion for a Particle in Homogeneous Turbulence 
For a turbulent flow there is no single set of scales but rather a continuous spectrum of velocity 

and length scales which must be considered in any application of the particle equation of motion. 
In the core of a CFB or freeboard of a bubbling bed, the larger, more energetic motions are more 
characteristic. In this case the length scale is D and the velocity scale is u ,  (Hinze 1975). The 
corresponding time scale is D/u, .  

Non-dimensionalizing [42] using these scales results in 

( P~ -- Pf~ fi, D 

dt ~ = u~** ~ \ ~ ] \ ~ j  CD f" -- ~p -D5 Up 

3 { pl,2 .'~{pf)dD'~ f d ( f ,  ~,p 1 d 2V,2K, ) dz 
2x/~ \u~2 D ll2p~12/l\p,]\dp/I Cn -~z 24 D 2 ( t ' - -  z) 1/2 

- - U p  - 4 0  D - 5  \ p J  Dt CA~T f, Up V,Eff,p + [431 

The controlling dimensionless parameters which appear in [43] are 

l (.f~(OX~ {pfx~ C .2 
2 Ps J Fr,.,D \P#kdp /  Re~fio\p,]\dp] , ~ ]  A,-~ 

The coefficients CA and Cn are functions of the acceleration number defined as the ratio of 
convective to local acceleration and Fr is the Froude number. This number was used by Iversen 
& Balent (195 l) and Keim (1956) who derived it by dimensional reasoning alone. If the local length 
and velocity scales are on the order of the eddy length and fluctuating velocity, and convective 
length and velocity scales are L and u . ,  the acceleration number scales as 

le u2* .73f(  ) [45] - -  , - ~ 2  D 
Ac ~ L u~ct Z 

using the single phase pipe flow correlations of Hinze to estimate u . ,  the eddy length scale (It) and 
the fluctuating velocity (unct). For typical fluid bed operating conditions, f ( the  gas friction factor) 
is about 0.04. Hence, for moderate to large aspect ratios, the acceleration number will be quite small 
resulting in the coefficients CA and Ca tending toward their constant limit of 1/2 and 6, respectively. 
For conditions where the acceleration number is not small, CH and CA will depend on the bed 
geometry and the bed Reynolds number. 

From the first term and the last term in [44] the density ratio and the Froude number based on 
bed diameter and friction velocity must be constant for similarity. Since Co is a complex function 
of Reynolds number based on particle diameter and relative velocity (u~), Re,=~.dp must also be 
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constant. From the second or the fifth term, the ratio of bed to particle diameter must also be 
included as a governing dimensionless group. Finally, the third term requires that the Reynolds 
number based on bed diameter and friction velocity must also be constant. The set of dimensionless 
parameters can be written as 

Fr {P'~ Reu. o, ( D )  Re~0, D bed geometry [46] 
..,a, ~,PF,]' ' Re"r~t'dP' ~ = Re=0,ap' 

If  relationships of the form for single phase flow are valid, the shear velocity is of the functional 
form, 

u - - - - - f n c ( ~ l  ~ (Hinze 1975) [47] 
u0 \Re.o, J 

The list of governing parameters can then be rewritten as: 

Fr,0.D,(P~r),Re~0,ap, Re~o.o, bed geometry [48] 

The Reynolds number based on particle diameter and relative velocity does not need to be 
included in the list because its scales with the Reynolds number based on terminal velocity (ut) and 
particle diameter if 

u~l ~ ut [49] 

The terminal velocity based Reynolds number (Ret) is a function of only the Archimedes number 
which can be written as a combination of dimensionless parameters included in [48] 

Ar = (Re.o alp)3 1 (Ps~ [50] 
' Fr.o,o Re~o,o \PL/ 

Equation [48] shows that the governing dimensionless parameters of the equation of motion for 
a single particle are identical to those derived using the Anderson-Jackson equations which treated 
the mass of particles as a continuum. 

For most fluidized beds, the ratio of fluid to solid density is very small. This allows one to ignore 
the added mass term and the term representing the influence of fluid stress-gradients on the particle. 
Moreover, the Faxen forces give rise to a relative motion scale of d2pu,/D 2, which is very small 
in fluid bed applications. This permits one to neglect the Faxen terms in [42]. However, even with 
these simplifications it can be shown that the governing dimensionless groups do not change. In 
fact, even when all terms on the right-hand side of [42] except for the drag term and the 
gravitational term are ignored, the set of dimensionless groups does not change. 

4.3. Single Particle Equation of Motion Near a Solid Boundary 
Near the wall of a fluidized bed the lift forces associated with shear of the undisturbed flow may 

become important. In addition, the fluid-particle drag becomes a function of the particle to wall 
distance. It is important for these forces to be scaled properly when evaluating phenomena very 
near the wall of the fluid bed. For example, bed-to-wall heat transfer may be a function of this 
force. 

Saffman 0965) showed that a sphere subjected to a uniform shear and rotating with the fluid 
while translating with a velocity v experiences a side force of relative magnitude 

1.62dpl~(Upx-Vx)(d~y/2(dupx~ I/2 
\-T j \ - G  J " 

In the core of  a fluid bed, this term is negligible due to the low fluid shear rates. However in the 
viscous sublayer near the wall, the magnitude of the fluid shear can become extremely large 
resulting in finite effects of shear induced lift. 

The presence of a wall will increase the drag coefficient of the particle as compared to that in 
the case of unbounded flow (Faxen 1923). To account for this effect, modifications to the drag force 
of the form determined by Faxen (1923), Brenner (1961) and Maude (1961) can be used. Faxen's 
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expression of the correction to the drag on a small sphere in the direction parallel to the wall, Zx, 
is a function of dp/Y. Y is the particle to wall distance. Brenner (1961) and Maude (1961) 
independently determined the modification to the drag force for a small particle moving normal 
to a wall Zr. It was also found to be a function of dp/Y. 

The equation of motion for a sphere near the wall (neglecting axial velocity gradients) is: 

np~d36 dfdt = n(ps- 6PG)d3g ~prCDf~d~8 (/~ -- ~p -- 1 d2V2~p) . l/7 -- /~p] nd~laC H4 ~.("o ~d [f _ Up 

1 

rt (t -- z)J 

rrd3pr D~p 1.62#d2p, (dup x'~,/2 + 6 Dt + ~ [ V x - - U p x ) \  dr J [51] 

Near the wall neither the bed diameter nor the boundary layer thickness is a suitable length scale. 
Since the flow there is determined solely by u ,  and v, the proper length scale is v/u, .  The velocity 
and time scales are u ,  and v/u2,, respectively (Hinze 1975). 

Non-dimensionalizing the near-wall equation of motion yields: 

( v ) (  , ( Up 2 4 D - ~ Z )  
(ps__j0f~ ( ) 2 dr '  v 3 u ,  p , \  V'2/~, 1 dt--7=k p, /g ~, -4 -~p \K.,I CD~' f '  -- -" - - -  [tT'--a~,[ 

3 (~)(pf) ftt d(~, 1 ~-2 ) dz 
- Up 24D ( t ' - z )  1/2 2,/; 

--(~) CA d ( g , _  _, 1 d~ ,2_,\ (Pf)Dt/p 9.72 /a du~-~ up ,(o-~V Up)+ ~ -~7+ ~ dp;u,(Vx-U'px)-~r;-tr [52] 

where 

~' = fnc(Reap,~.) [53] 

The governing parameters which appear in [52] are: 

( gH ~ , /ps\ 1 /P~\ 1 , (Pf~ cA, (~ ) dv Re //ps'~ , ~ ,  [54] 
~Pf u3 } Re'*'a" t ~ ) - ~ o  ' Re'"aP t~)-C--.H \Pal ""a" \Pf. 'l 

The independent dimensionless parameters are: 

Re~,dp, Re.o,v, ~ , Fruo,dp, CH and CA [551 

(Note that the first term in [54] can be written as 

(gp@3.) = 1 . 
Reu.,ap Fru.,ap 

As discussed earlier, CH and CA are nearly constant for conditions found in fluidized beds. 
For conditions where they are not constant, they only depend on bed geometry and bed 
Reynolds number. Hence, the set of  dimensionless groups which govern particle 
hydrodynamics in the near-wall region is identical to those governing particle motion in the core, 
namely 

Re,0,dp, Re~o, D (Pf~, ' kPd  Fr~°'aP' bed geometry [56] 
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If  the Faxen terms, Basset history term, added mass term, the term representing fluid stress 
gradients on the particle and the Saffman lift force are ignored, the governing independent 
parameters do not change. 

It should be noted that, in general, the particle fluid drag will also be a function of  particle 
sphericity and bed voidage (Wen & Yu 1966b). 

Fdrag =f(E)g(~b) 8 d2pg(v - a01t~ - up I [57] 

The inclusion o f f ( Q  and g(~b) in the drag term extends the analysis to include non-spherical 
particles. This results in the particle sphericity being added to the list of  parameters in [48] and 
[56]. 

4.4. Boundary Conditions 

A particle with location y ( t )  in the flow field is required to satisfy the following boundary 
conditions. 

a = f + tq × [~ - )7(0 ] on the particle 

ti(£, t) u07 Ix -)7(01 
= - -  a s - -  ,, .oo 

dp 

- G+Ct------~) 7 as ~(t)-~O 
p , ( 1 - 0  

Uo= 
f(ff, t) = - -  t as f i ( t ) ~ L  [58] 

E 

where fl is the angular velocity of  a particle. 
The initial condition is set such that the particle velocity is zero as it enters the flow field, and 

the disturbance field is zero before t = 0. 

ld2 ~72¢z V(0)  - -  u ( y ( 0 ) ,  0 )  - -  g--p--  u = 0 [59] 

Assuming that particle rotation is negligible, the non-dimensional form of the boundary equation 
is: 

tT' = 6' on the particle 

1 Ix -- jT(t)l 
~ ' = -  as 

+ dp 

f ,  :- Gs 7 as ) 7 ( t ) - - + O  
p~ Uo(1 - t) 

f '  = 17 as ~ ( t ) ~ L  [60] 
E 

1 2 
v'(0) . ' (y(0) ,0"--  ' = 0  - ) 6 D  2 v u  [61] 

For fluidized beds, the Faxen force contribution to the initial condition can be dropped resulting 
in 

v'(0) - u'(y(0), 0) = 0 [621 

The controlling set of  dimensionless groups which result from the single particle equation of  motion 
and the boundary conditions is then 

Fr.0,o, ( ~  ' ~ L \pf// Re.o.d,, Re.0,a, , q~, ~ [63] 
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5. DESIGN OF SCALE MODELS BASED ON FULL SET OF SCALING RELATIONS 

5. I. Scale Model Operating Conditions 

To construct a model which will give behavior similar to another bed, for example, a commercial 
bed, all of the dimensionless parameters listed in [35] or [37] must have the same value for the two 
beds. The requirements of similar bed geometry is met by use of geometrically similar beds; the 
ratio of all linear bed dimensions to a reference dimension such as the bed diameter must be the 
same for the model and the commercial bed. This includes the dimensions of the bed internals. The 
dimensions of elements external to the bed such as the particle return loop do not have to be 
matched as long as the return loop is designed to provide the proper external solids flow rate and 
size distributiont (Rhodes & Laussman 1992). 

Proper conditions must be chosen to design a scale model to match the dimensionless parameters 
of the target bed. To model a gas fluidized commercial bed, a scale model using air at standard 
conditions is most convenient, although several investigators have used other gases (Fitzgerald 8~ 
Crane 1980; Fitzgerald et al. 1984; Chang & Louge 1992) or pressurized scale models (Almstedt 
& Zakkay 1990; Di Felice et al. 1992a, b). The gas choice for the model determines the values of 
pr and ,u. The model particle density is chosen to match the density ratio, so that 

where the subscript m is for the model and c is for the commercial bed. For the remaining 
parameters the form of [35] will be chosen for the dimensionless parameters. Combining the 
Reynolds number based on bed diameter and the square root of the Froude number, 

Rearranging, 

(s)=(P&y’ 

All of the linear dimensions of the model are scaled to the corresponding dimensions 
commercial bed by the ratio of the kinematic viscosities raised to the two-thirds power. By 

of the 
taking 

the ratio of Reynolds number based on the particle diameter to Reynolds number based on the 
bed diameter, 

WI 

b71 

The particle diameters in the model scale by the same factor as the bed diameter, by the ratio of 
the kinematic viscosities to the two thirds power. 

Taking the product of the Reynolds number and the Froude number, using [66] and rearranging, 

WI 

By satisfying both [66] and [68], the Reynolds number and the Froude number are kept identical 
between the model and the commercial bed. 

Combining G,/p,u,, and the product of Reynolds and Froude numbers along with [66] it can be 
shown that 

GS 

0 z 
l/3 

m- 
G, 

0 

W91 

zc 

fin rare occasions, solid or gas flow fluctuations set up by the return loop design will influence the bed dynamics. In that 
case the return loop design may be important. 
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so that the ratio of solids flow to solids density scales as the ratio of the third root of the kinematic 
viscosity. 

To satisfy the full set of dimensionless parameters, once the model fluid pressure and temperature 
are chosen there is one unique set of parameters for the model which gives similarity. The dependent 
variables, as non-dimensionalized by [25] will be the same in the respective dimensionless time and 
spatial coordinates of the model as the commercial bed. The spatial variables are non-dimension- 
alized by the bed diameter so that the dimensional and spatial coordinates of the model is 
proportional to two-thirds the power of the kinematic viscosity, as given by [66], 

Xm = (Vm y/3 [70] 
Xo \vc /  

The velocity scales with v~/a, the ratio of time scales can be expressed as 

t '=(vr '~  1/3 [71] 
tc \ vfc / 

Similarly, it can be shown that the frequency scales as 

fm'~Vr '~ I/3 [72] 
f c  ~VfmJ 

Table 1 gives the values of design and operating parameters of a scale model fluidized with air at 
ambient conditions which simulates the dynamics of a fluidized bed combustor operating at 850°C. 
Fortunately, the linear dimensions of the model are much smaller, roughly one quarter, than the 
combustor. The particle density in the model must be much higher than the density in the 
combustor to maintain a constant value of the gas to solid density ratio. Note that the superficial 
velocity of the model differs from that of the combustor as well as the spatial and temporal 
variables. 

When modeling a pressurized hot bed (table 2) the ambient temperature model fluidized with 
air has dimensions very close to those of the pressurized combustor. If another gas is used in the 

Table I. Atmospheric combustor modeled by a bed fluidized at ambient 
conditions 

Given Commercial bed Scale model 

Temperature (°C) 850 25 
Gas viscosity (10 -5 kg/ms) 4.45 1.81 
Density (kg/m 3) 0.314 1.20 
Derived from scaling laws 
Solid density p~ 3.82p~ 
Bed diameter, length, etc. D e 0.225D¢ 
Particle diameter d r 0.225d~ 
Superficial velocity u~ 0.47uo, 
Volumetric solid flux (GJps) c 0.47 (Gs/ps)c 
Time t c 0.47tc 
Frequency fc 2.13f~ 

Table 2. Pressurized combustor modeled by a bed fluidized with air at 
ambient conditions 

Given Commercial bed Scale model 

Temperature (°C) 850 25 
Gas viscosity (10 -5 kg/ms) 4.45 1.81 
Density (kg/m 3) 3.14 1.20 
Pressure (Pa) l& 105 
Derived from scaling laws 
Solid density p~¢ 0.38210,: 
Bed diameter, length, D e 1.05De 
Particle diameter d r 1.05dr ~ 
Superficial velodty u~ 1.01u~ 
Volumetric solid flux (G,/ps) ¢ 1.01 (GJps) c 
Time tc i.01 t¢ 
Frequency f~ 0.98f¢ 

MF 20/7 Sup---V 
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Table 3. Pressurized combustor modeled by a bedfluidized with refriger- 
ant vapor 134a at ambient conditions 

Given Commercial bed Scale model 

Temperature (°C) 850 20 
Gas viscosity (10 -5 kg/ms) 4.45 1.19 
Density (kg/m 3) 3.14 4.34 
Pressure (Pa) 106 105 
Derived from scaling laws 
Solid density p~ 1.38p~ 
Bed diameter, length D c 0.334Dc 
Particle diameter dr~ 0.334d~ 
Superficial velocity uo~ 0.58uo~ 
Volumetric solid flux (Gs/ps)~ 0.58 (G~/p~)~ 
Time t~ 0.58t~ 
Frequency f¢ 1.7f~ 

model, particularly a gas with a higher density, the model can be made much smaller than the 
pressurized combustor (see table 3). Care must be taken to select a safe modeling gas and one which 
yields a solid density for the model which is available. 

5.2. Non- isothermal  Conditions 

Since a fluidized bed is characterized by intense solids mixing, most of  the bed volume 
is isothermal. An exception is the immediate vicinity of  the distributor or other fluid or 
solid entrances to the bed. If  the fluid entering the bed is at a different temperature than the 
bed, the entering material undergoes a rapid temperature change. For  a gas jet there is a 
corresponding density and velocity change. For  a laboratory model it is difficult to simulate this 
region exactly. 

These thermal effects are confined to the entrance region but they may influence initial bubble 
formation or particle mixing. An approximate method to compensate for this effect can be used 
in an isothermal model where the entering fluid temperature is the same as the bed temperature. 
We will consider the case of  a gas jet to allow for density changes due to temperature changes. 
Generally, the entering velocity is low enough to neglect the influence of  the Mach number. The 
key concern is the size of  the orifices of  the cold model to properly account for the non-isothermal 
effect of  the commercial bed. 

Consider a simple case when the entering jet is heated and expands while entraining solids 
initially at zero velocity but not entraining fluids from the bed (this does not alter the conclusion, 
it only simplifies the resulting equations). 

For  the commercial bed with a temperature change for the entering jet, the mass flow rate at 
steady state must be the same at the orifice conditions as it is at the bed temperature while the 
volume flow rate changes. Thus for one dimensional flow of  gas 

Pfor U°r A°r = P f ~  Uned ABed E [73] 

where the left-hand side terms are evaluated at orifice conditions and the right-hand side at bed 
conditions. 

Similarly, if there are no friction losses and there is uniform pressure in the entrance region the 
momentum balance must yield 

2 pforuorAor = p f ~ u ~ A ~ . d E  + psV~cdAa~(1 -- E) [74] 

where Aor is the orifice area. 
Dividing [74] by the first term on the right-hand side, 

2 psV~edAaed Pr°'u°rA°' = E 4 (1 -- E) [75] 
pfacaU2dAaed P rB~ u ~ A md 

To obtain equal solid to bed fluid momentum flux at the same solids void fraction, the ratio of 
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orifice to bed fluid momentum must be the same in the isothermal model as it is in non-isothermal 
commercial bed entrance region. 

= (. [76] 
pr~U~,dA~dJm ~,pf~u~.da~dJ¢ 

NOW multiplying each side by the square of the ratio of fluid mass flow rate at bed condition to 
model conditions, 

E 2 [77] 
2 " - -  £ ="  ---- oo,,Uo,.,°, ) .  t Oo.,,,o, jo o,..,,o, 

For the model, the fluid density at the orifice is the same as everywhere else in the model. The 
voidage in the model and commercial beds should be the same. Thus, [77] becomes 

\ Por~Aor /~ 

The orifice-to-bed area ratio in the model differs from the corresponding area ratio in the 
commemial bed by the ratio of fluid density leaving the orifice and throughout the bed. 

6. SIMPLIFICATION TO THE SCALING LAWS 

When constructing a modelfluidized with ambient air, matching the full set of scaling parameters 
results in a unique set of values for the particle density and diameter and for the linear dimensions 
of the bed. By simplifying the set of scaling relationships, it is possible to relax the constraint on 
the dimensions of the model relative to the full scale bed. 

The full set of scaling relationships were obtained by non-dimensionalizing the equations of 
motion for the particles and the fluid in a fluidized bed along with their boundary conditions. In 
most situations, the viscous forces associated with the macroscopic gas and particle velocity 
gradients are negligible compared to the interphase drag. This is seen in [17b] and [18b] where the 
terms representing the fluid and particle viscous stresses are multiplied by the inverse of a Reynolds 
number based on superficial velocity and bed diameter. If it is assumed that these terms can be 
dropped from the fluid and particle phase stress tensors, non-dimensionalization of the continuum 
equations yields the following dimensionless parameters: 

u2 Ps flD D Gs [79] 
gD' pc' psU0' L ' psu0 

In the general case, (flD)/(psuo) is related to the viscous and inertial forces of the fluid through 
the Ergun equation or through the expression for drag on a single sphere. These relationships 
indicate that (flD)/(P, uo) is dependent on the Reynolds number based on the particle diameter, d v/D 
and the dimensionless particle size distribution. Substituting these parameters into [79] yields the 
full set of scaling parameters described previously above. 

6.1. Simplification to the Scaling Laws 
Glicksman (1984) showed that the list of controlling dimensionless parameters could be reduced 

if the fluid-particle drag is primarily viscous or primarily inertial. The standard viscous and inertial 
limits for the drag coefficient apply. This gives approximately 

Viscous: Reu~,.dp ]tY -- f'l < 10 

Inertial: Reu,~,&,la" - 5'1 > 1000 [80] 

using the Ergun equation. 
The use of a Reynolds number based on relative velocity rather than superficial velocity in setting 

these limits was suggested by Horio (1990). In setting viscous or inertial limits, it is the interphase 
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drag which is characterized as being dominated by viscous or inertial forces. The particle inertia 
is important even if the interphase drag is viscous dominated. This is because of the typically large 
solid-to-gas density ratio. 

6.2. Viscous L imi t  

For viscous dominated flows, it can be assumed that the gas inertia and the gas gravitational 
forces are negligible. In most situations, the viscous forces in the gas which are associated with 
macroscopic gas velocity gradients are negligible compared with the interphase drag; the term 
representing these forces can be removed from the gas momentum equation. The dimensionless gas 
momentum equation becomes 

V'p' + - - -  (u' - v') = 0 [81] 
Ps Uo 

From the Ergun equation, the dimensionless drag coefficient can be written as 

f l L ( a _  150 (1 - E)z//L) 1 [82] 
Ps U0 E3 ~kdpJ Redo.dr 

The remaining set of dimensionless equations does not include a density ratio. The ratio between 
the bed and particle diameters and the Reynolds number based on bed diameter, superficial 
velocity and solid density appear only in the modified drag expression, in which they are 
combined. These parameters form a single parameter, as has been discussed by Glicksman 
(1988) and other investigators. The set of independent parameters controlling viscous dominated 
flow are then 

p uod  D ,PSD [83] 
/~D ' q~' ' L '  p~u0 

The first term in the list multiplied by the third term has been shown by Glicksman (1988) to be 
equivalent to the ratio of superficial and minimum fluidization velocities. The controlling 
parameters can therefore be written as 

Umf , o ,  g D  , D , __Gs , PSD [84] 
u0 ~02 L p~u0 

For very small particles or small particle-gas relative velocities, the single particle equation of 
motion at large distances from a boundary approaches the Maxey-Riley equation. If the terms 
in the equation of motion with a coefficient of (Pf/Ps) in addition to the Faxen forces are neg- 
lected, and it is assumed that the friction velocity is a weak function of bed Reynolds number, 
the controlling dimensionless parameters are identical to those determined from the continuum 
flow field analysis. The viscous limit requirement is based on the assumption that the dimension- 
less interphase drag can be modeled as a linear function of the particle Reynolds number. Because 
of clustering of particles, this may not be a valid assumption, and the requirements for 
neglecting gas inertia may be much more stringent. As will be discussed in the experi- 
mental verification of simplified scaling laws, a viscous limit for interphase drag may not exist in 
CFBs. 

It must be borne in mind that this set is valid only when fluid inertial effects are negligible, 
i.e. they are a subset of the general relationships. Glicksman (1984) used the criteria for the viscous 
limit in a bubbling bed that the ratio of viscous forces to fluid inertial forces in the Ergun equation 
is ten or larger. From table 1 of that reference, for a bed of glass or sand fluidized with air 
at standard conditions with Uo/Umf of 3, the viscous limit occurs when particles are less than 
about 200#m. In regions where particles behave individually, the viscous limit occurs for 
particles less than 60/~m (assuming the particle/gas relative velocity is equal to the particle 
terminal velocity and the single particle viscous limit criterion is Reu,,.dp < 1). 
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6.3. Inertial Limit 
In the inertial limit, the bulk gas friction is clearly negligible, and this term can be dropped from 

the gas momentum equation. From the dimensionless equations of motion, it can be shown that 
the controlling dimensionless parameters are 

fiB gD L Pr gp, PSD [85] 
psuo' u~ ' D 'ps '  

In the high Reynolds number limit, the Ergun equation simplifies to 

flD ,,~ 1.75 (1 - e) izT, _ ~'1 D pf [86] 

The dimensionless interphase drag is only a function of (Pf/Ps)(D/dp), e and ~b; the gas viscosity 
is unimportant. The governing parameters are then 

gD pf ~ ,  L 
u~ 'ps '  D'~b and PSD [87] 

At high Reynolds numbers, the viscous drag forces between a single particle and gas are negligible 
compared to the inertia force. The interphase drag expression can be simplified by setting the drag 
coefficient equal to 0.44. This coefficient applies for Reynolds numbers based on the relative velocity 
in the range from 1000 to 100,000. The parameters which result from non-dimensionalizing the 
resulting equation of motion for a single particle can be shown to be equivalent to those derived 
from the inertial limit of the continuum analysis. 

The minimum size of the particle diameter at the inertial limit in a bubbling bed was 
approximated by Glicksman (1984) in a manner similar to that for the viscous limit. It was found 
that one atmosphere d~,  is approx. 2.6 and 7.3 mm for bed temperatures of 15 and 800°C, 
respectively (assuming a particle density of 2.5 g/cm3). For particles which behave individually, the 
respective diameters are 1.6 and 4.5 mm (assuming the particle/gas relative velocity is equal to the 
particle terminal velocity and the inertial limit criterion is Reu,~,d~ > 1000). 

It is interesting to note that the density ratio enters as a separate parameter in the list developed 
from the single particle equation of motion, [63], only if the particle motion is accelerating or highly 
time dependent (virtual mass and Basset history terms become significant). This is a direct result 
of how the general equation of motion was developed. One of the assumptions used to develop 
particle equations of motion of the type of Maxey & Riley is that the advective terms in the gas 
momentum equation can be neglected. This results in the density ratio only entering the list of 
parameters as a product with the ratio of bed to particle diameters. Similar results are obtained 
in the inertial limit using the continuum analysis if gas-phase inertial contributions are negligible 
(Zhang & Yang 1987). If this assumption is not made, the solid to fluid density ratio appears in 
the list of governing dimensionless groups. 

6.4. New Simplified Scaling Laws 
The viscous and inertial limits only apply for their respective limits. In order to reduce the 

number of scaling parameters, Glicksman et al. (1993b) explored various forms of the 
drag relationship to investigate simplifications to the full set of scaling parameters which would 
be valid over a wide range of Reynolds numbers. The following discussion is a summary of this 
study. 

6.4.1. Low Reynolds number 

At low particle Reynolds numbers the Ergun equation can be simplified using only the viscous 
limit term. 

Thus 

flD ~150 E(1 --e) 2 #D 
uop-----~ e--------3~PsUo(dpdp) 2 for pru°dp~o# [881 
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At the same limit the minimum velocity can be written for gas fluidized beds where ps - pf can be 
replaced by Ps as, 

p~g(1 -- emr ) 
/'/mr ~'~" [ 1 2 -  Emf ~ 1 [89] 

150 E mr3 ( ~ p ) 2  

Substituting [89] into [88], 

BD g ( l - e )  2 e3rD 1 Uo ( l - e )  2 

psUo (1 - -  £mf)E2Umf psUo F r  UmfE3mf(1 - -  Emf)£ 2 [90] 

Thus, in the low particle Reynolds number limit, maintaining uo/Umf, emr and Fr identical between 
two fluidized bed guarantees that f l D / p ,  uo is also identical. Although ¢ and d~ are eliminated 
between [88] and [89], in general particle sphericity and dimensionless size distribution should be 
held constant in the scaling. The use of ¢ and a mean diameter in the Ergun expression only 
approximates the effects of these parameters. In this limit, the governing parameters given in [79] 
can be expressed as, 

u02 Ps u0 D G~ 
- - ,  ~b, PSD [91] 

g O '  pf '  Umf' L ' psUo 

where Emf will be a function of particle sphericity and size distribution. 

6.4.2. Large  Reyno lds  number  

Consider the limit of high particle Reynolds numbers where the inertial term in the Ergun 
equations dominates. 

In this limit, 

f iB  +1.75 (1 - e) prOl~"  - f'[ [92] 
psUO e Ps ¢dp 

where u' = U/Uo and u'  - v' is a dimensionless relative velocity. The minimum fluidization velocity 
can be expressed as, 

3 q~dvpsg 2 --  £mf [93] Umf --  
1.75 fir 

Substituting this into [92] and mutiplying by Fr, 

Fr f lD _ u~ e3mrDla" - f'tg(1 - e) = u~ e3mr(1 - e)la' - f 'i [94] 
psuo g D  eU2m r 2 Umf E 

At large particle Reynolds numbers, just as at the low Reynolds numbers, the dimensionless drag, 
f lD/p~uo, is identical when Uo/Umf , Emf and Fr are identical, e, u' and v' are dependent dimensionless 
variables which are identical for two similar fluidized beds. In this limit the same set of governing 
dimensionless parameters applies as in the viscous limit, given by [91]. 

Since the same simplified set of dimensionless parameters holds exactly at both high and low 
Reynolds numbers, it is reasonable to expect that they will hold, at least approximately, over the 
entire range of conditions for which the drag coefficient can be determined by the Ergun equation 
or an equation of similar form. The validity of the simplified parameters can be checked numerically 
for the intermediate range of values. 

6.4.3. General  case 

Of particular concern is the error in the dimensionless drag coefficient when a scale model is 
designed using the simplified set of scaling rules [91]. The simplified scaling parameters allow 
smaller models to simulate a given sized target bed. As the length scale is reduced the superficial 
velocity must be reduced to maintain a constant Froude number. The particle diameter must also 
be reduced to keep Uo/Umf c o n s t a n t .  
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PFBC 

Exact model 

1/4 Scale 
simplified model 

1/16 Scale 
simplified model 

P T (°C) L u o 

PFBC 101.3 Pa 800 L ° u o 

Exact model 101.3 Pa 20 L o u o 

1/4 Scale 101.3 Pa 20 Lo14 uo12 
simplified model 

1116 Scale 101.3 Pa 20 Loll6 uo14 
simplified model 

Figure 3. Exact and simplified models of a pressurized combustor, shown at the same scale. 

To determine the validity of the smaller, simplified models, the dimensionless drag coefficient 
[3D/psuo can be compared between the models designed using the simplified scaling laws and whose 
linear dimensions are one quarter and one sixteenth, respectively, of the linear dimensions of a 
model designed using the full set of scaling laws. Figure 3 shows a comparison of the exact model 
and the simplified models for a fluidized combustor pressurized to 106 Pa. Using the full set of 
scaling laws the exact model, fluidized by ambient air at one atmosphere, is approximately the same 
size as the combustor. The models using the simplified scaling laws are reduced in size by their 
respective assumed length scale. The other parameters of the simplified model are then calculated 
to match the dimensionless parameters in [91]. 

The errors in the dimensionless drag coefficient [3D/PsUo using the simplified scaling models are 
shown on figures 4 and 5 for uo/Umr of 10 and 1000, respectively, plotted as a function of Rep~, 
the Reynolds number based on parameters for the exact scaled bed. For a particle Reynolds 
number of 1000 or less, which corresponds to pressurized beds with particles of 1 mm or less, the 
error in the drag coefficient with the simplified scaling laws is 20% or less for a one-quarter length 
scale model. The error is 40% or less for a one-sixteenth length scale mode. At Uo/Umf of 1000 and 
Ur~I/Uo of 1/50 the errors for the one-sixteenth scale model are 20% or less for Repe less than 103. 
For particles of 0.2 mm or less, corresponding to a Reynolds number of 100 or less, the errors in 
drag coefficient are minimal. When the Ergun equation applies for the drag coefficient, a 
one-quarter scale model based on the simplified scaling laws should be valid for any conditions. 
A one-sixteenth scale model should be valid for particle diameters of about 0.2 mm or less for a 
pressurized bubbling bed with UO/Umf of 10 and Ur~,/Uo of 0.3. At Uo/Umf of 1000 and UrJUo of 1/50, 
the one-sixteenth scale model should be valid for pressurized beds with particles up to 1 mm in 
diameter. These conclusions apply when the particle to fluid drag is given by the Ergun equation 
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Figure 4. Error in dimensionless drag coefficient, Ergun 
equation, uo/umf = 10, usl/uo = 1/50. 

I I l l l l l  

1 0 , 0 0 0  

Figure 5. Error in dimensionless drag coefficient, Ergun 
equation, uo/umf = 1000, u,i/uo = 0.3. 

or similar relationships and the scaled particles are not so small that interparticle surface forces 
come into play. 

6.4.4. Clusters 

In the freeboard of  a bubbling bed or in the upper portion of  a circulating bed where particles 
generally are considered to act in clusters or groups, a similar examination of  scaling of  the gas 
to solid drag can be made. Consider all of  the particles grouped into clusters with an effective 
diameter dc and the clusters occupying a volume fraction E c of  the bed volume. The cluster to gas 
drag will be represented by the drag coefficient for a solid sphere of  diameter de, 

~d~ ~ 2 
1 d c  ~ -  

fll6 - 6[ 6(1 - Ec~ = [P:-4- lU -/~I2CD [95] 

This can be rewritten as, 

#D 
- ~  3 ( p f ~ l ~  , _ f ' [ C D  ~c (1 - -  ¢¢) [96] 

psUo 4 \Psi 
If  the diameter of  individual particles does not influence the drag of  a cluster of  particles, then when 
the solid-to-gas density ratio is held constant between the combustor and the model, the 
dimensionless drag f lD/p,  uo is properly scaled when the fluid to gas density ratio is held constant 
between the model and the combustor and CD is invariant. 

If the reduced scale models faithfully reproduce the dynamics of the exact case, the cluster 
dimensions should scale directly with the linear dimensions of  the bed. Thus, a one-quarter linear 
scale model which has a velocity one-half that of  the exact case will have a cluster Reynoldsnumber  
(Rea,) one-eighth that of  the exact bed. From the relationship of  Co with Re the change of  Co with 
model scale at a given Reynolds number of  the exact bed can be determined. Figure 6 shows the 
shift in Ca using the relationship of  White (1974) for length scales of  one-quarter, one-eighth and 
one-sixteenth, respectively, of  the exact bed length as a function of  the cluster Reynolds number 
of  the exact bed. Also shown on the figure is the typical Reynolds number of  an atmospheric 
combustor with a 0.3 m cluster diameter, approx. 1.5 x 104. In a bubbling bed, the cluster diameter 
in the freeboard should be at least equal in size to the diameter of bubbles erupting at the bed 
surface. For beds with horizontal tubes, the bubble diameter will be equal to or larger than the 
horizontal tube spacing. In a bubbling bed without tubes, the bubbles and clusters can be much 
larger. In an open circulating bed the cluster diameter is more difficult to determine, It is reasonable 
to assume its diameter is proportional to the bed diameter, equal in magnitude to the bed diameter 
or one order of magnitude smaller. From these considerations, the Reynolds number based on the 
cluster diameter should be 104 or larger in an atmospheric combustor with a cluster diameter of 
0.2 m. The cluster Reynolds number should be 105 or larger in a pressurized combustor. From 
figure 6 it can be seen that a one-quarter scale or an eighth scale model should have drag coefficients 
similar to the exact bed. For  pressurized beds, the drag coefficients should be very close in 
magnitude. 
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6. 4.5. Individual particles 
If the drag coefficient, fl, is influenced by the characteristics of  individual particles, the detailed 

particle dynamics of the simplified scale models must be examined. In this case, 

ill) = ~ (p~)la' - t~'lCt) ~ (1 - E) [97] 
p~uo 

where Co is the drag coefficient of a single particle. This can be rewritten in terms of the single 
particle terminal velocity which can be found from, 

p s n a ~ g  = [. pfnd2p CDU2 [98] 
6 2 4 

Substituting [98] into [97] to eliminate Co, one obtains, 

I-. u0,_, t~'l(1 E) [99] p~u0 rr - u~ lu - 

Since uo/u~ and Fr are held constant in the simplified scaling process, we will examine the ratio 
Ut/Umf to determine if the drag coefficient flL/psu o remains constant. 

The Ergun equation can be solved to find Umf, 

--(150)(13 - -  Emf)2 -t- N/[-(150)(1ST - -  £mf)212  -~ 7(1 - -  £mf)  2 ~3Ar 
Emf (~mf J 3 

Pf Un~ dp= 3.5(1 - -  Emf)( ~ (~mf [ 1 0 0 ]  

3 
~mf 

where Ar = pspfd~g/lt i s  the Archimedes number. 
Using the relationship given by White (1974) for CD, 

Re 2 _ ~Ar 
24 6 [101] - - +  
Ret 1 + ~ t  + 0.4 

where Rot = pfutdp/I.l. 
At small and large values of  Ar, the ratio of  Ut/Umf approaches a constant value. In these two 

limits, the simplified scaling laws will yield exact agreement of  ut/Umf between the eombustor and 
the simplified models. The errors in ut/umf are shown in figures 7 and 8 for simplified scale models 
at two different linear dimensions. Scaling a combustor with comparatively small particles, 0.2 mm 
or less, gives good agreement for UdUmf even at one-sixteenth linear scale, while for large particles 
a linear scale of  one-quarter gives fair agreement for UJUmf. Since u0/Umf is held constant in the 
simplified scaling laws, close agreement of  ut/Umf also results in close agreement of  uJuo. 

C 

10 - 

L/Lexac  t = 1/4 

- - L /Lexac  t = 1/8 

- u L /Lexac t  = 1/16 

Re: 101.3 Pa, 6 m/s,  d c = 0 .3m 

I 
1000 10,000 ! I)t),000 

R e  = p ~ o d c l g  

Figure 6. Error in cluster drag ex~efficient for fixed ~ / ~ ,  
using Ca for a solid sphere. 
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Figure 7. Error in terminal velocity using simplified scaling 
at 1013 k P a  a n d  800°C.  
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F i g u r e  8. E r r o r  in  t e r m i n a l  v e l o c i t y  u s i n g  s i m p l i f i e d  s c a l i n g  a t  101.3 P a  a n d  800°C.  

7. EXPERIMENTAL VERIFICATION OF DYNAMIC SCALING 

Numerous techniques have been used to experimentally verify hydrodynamic scaling in fluidized 
beds. The overall objective of these techniques is to measure dependent hydrodynamic phenomena 
that can be used as a basis to compare scaled beds. When two fluidized beds are hydrodynamically 
similar, their dependent hydrodynamic phenomena, when expressed in dimensionless form, will be 
identical. In bubbling beds, methods such as video analysis and capacitance probe methods have 
been used to directly measure bubble properties such as their diameter, growth rate, diameter 
distribution, frequency and rise velocity. Similarly, optical probes have been used in circulating 
beds to measure variables such as cluster velocity and length to serve as a basis for scaling 
comparisons. With these methods the approach is to directly measure local hydrodynamic 
variables. 

A second approach, which is more common due to its ease and accuracy, is the use of 
time-resolved differential pressure measurements as the dependent hydrodynamic phenomena. In 
this approach, the pressure measurements are used to characterize the hydrodynamics of the 
fluidized bed. Lirag & Littman (1971) used statistical analysis of pressure fluctuations to estimate 
the average size of bubbles leaving a bubbling bed. Fan et al. (1981) concluded that bubble motion 
and coalescence are responsible for pressure fluctuations in fluidized beds. They also found that 
the amplitude of the pressure fluctuations is related to bubble size. Therefore pressure fluctuation 
measurements, when properly made, have been shown to reflect bed hydrodynamics. For local bed 
behavior, the differential pressure measurements should be made over a modest bed level rather 
than using a single pressure tap in the bed with the other tap in the freeboard. Differential pressure 
measurements should reflect local conditions. Roy & Davidson (1989) found that the maximum 
pressure difference between two closely spaced pressure taps is related to the bubble diameter at 
that level in the bed. Use of a single bed pressure point can make it difficult to interpret results 
since pressure fluctuations can be due to local effects, bubbles erupting at the bed surface, or even 
fluctuations in the supply system. Roy & Davidson (1989) found that pressure fluctuations 
measured using a single pressure point are primarly due to surface bubbles. They also concluded 
that the dominant frequency and amplitude measured at a single pressure point are independent 
of position in the bed. A summary of the experimental verifications of hydrodynamic scaling 
bubbling and circulating fluidized beds is presented below. Three unique sets of scaling laws were 
used in the experimental studies. To be consistent with the previous scaling laws development they 
will be referred to as: the full set of scaling laws [35], the simplified set of scaling laws [91] and 
the viscous limit scaling laws [84]. The CFB scaling law proposed by Horio et al. (I989) can be 
shown to be equivalent to the simplified set of scaling laws. Horio et al. (1989) also discussed a 
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reduced set of scaling laws in which the solid-to-gas density ratio is omitted. This reduced set is 
equivalent to the bubbling bed scaling laws proposed by Horio et al. (1986a) which have been 
shown by Glicksman (1988) to be equivalent to the viscous limit scaling laws. As will be shown 
in section 7.2, density ratio is not a parameter which can be omitted when scaling circulating 
fluidized beds. 

Tables 4 and 5 give the values for the full set of scaling parameters for the bubbling bed and 
the circulating bed studies respectively. The values of other parameters used for scaling are included 
in the "Other Parameters" column. It was not the objective of all the studies to match each of these 
parameters, but the tables provide a summary of what groups were matched and how closely they 
were matched for each of the studies. In some tests additional scaling parameters were unintention- 
ally matched. Figure 9 presents the range of conditions over which scaling comparisons have been 
made in terms of the Froude and the particle Reynolds numbers. 

7.1. Experimental Verification of  Scaling for Bubbling Fluidized Beds 

Fitzgerald & Crane (1980) were one of the first to evaluate the full set of hydrodynamic sealing 
parameters. They compared the hydrodynamics of two scaled beds using pressure fluctuation 
measurements and movies. In one bed cork particles were fluidized with air; the other bed was sand 
fluidized with pressurized refrigerant 12 vapor, Movies showed qualitative agreement between 
bubble growth and the solids flow in the beds. The ratio of the bed minimum fluidization velocities 
was within 20% of the theoretical value; the difference was attributed to the angular shape of the 
cork particles (~ not matched between the beds). The fast Fourier transform of the pressure 
fluctuations was used to determine the average frequency of the fluctuations. The ratio of average 
frequencies for the two beds was in fair agreement with the theoretical velocity-time scale factor. 
The pressure fluctuation data were taken with a single bed pressure tap. This may be responsible 
for the level of agreement in the frequency ratios. Some additional qualitative slugging comparisons 
were made using movies of bed behavior; the slugs appeared to have the same scaled lengths and 
velocities. 

Fitzgerald et al. (1984) measured pressure fluctuations in an atmospheric fluidized bed combustor 
and a quarter scale cold model. The full set of scaling parameters was matched between the beds. 
The autocorrelation function of the pressure fluctuations was similar for the two beds but not 
within the 95% confidence levels they had anticipated. The amplitude of the autocorrelation 
function for the hot combustor was significantly lower than that for the cold model. Also, the 
experimentally determined time-sealing factor differed from the theoretical value by 24%. They 
suggested that the differences could be due to electrostatic effects. Particle sphericity and size 
distribution were not discussed; failure to match these could also have influenced the hydrodynamic 
similarity of the two beds. Bed pressure fluctuations were measured using a single pressure point 
which, as discussed previously, may not accurately represent the local hydrodynamics within the 
bed. Similar results were obtained between two two-dimensional beds: a bed of reacted limestone 
fluidized with helium and a half-scale bed of copper fluidized with air. 

Nicastro & Glicksman (1984) experimentally verified the full set of scaling laws for bubbling 
fluidized beds. They compared the time-resolved differential pressure measurements from a 
bubbling fluidized bed combustor and a scaled cold model. Good agreement was obtained between 
the spectral content and the probability density distribution of the differential pressure fluctuations 
of the hot combustor and the cold model. Figure 10 presents the comparisons. They concluded 
that hydrodynamic similarity had been achieved between the hot combustor and the cold model. 
The solid-to-gas density ratio which was not matched exactly in the comparison differed by 23%, 
but the Reynolds number based on particle diameter (Redp) was approx. 5 suggesting the beds were 
operating in the viscous limit. At low particle Reynolds numbers viscous forces dominate fluid 
inertial forces making it possible to omit the density ratio from the list of scaling parameters for 
bubbling beds. When actual hot bed material was used in the cold model, a violation of the sealing 
laws, the model's behavior was very different from that of the hot bed. 

Horio et al. (1986a) used three geometrically similar bubbling beds, fluidized with ambient air, 
to verify their proposed scaling laws. The solid-to-gas density ratio was not varied in the 
experiments although it was not one of the proposed scaling parameters. By including the density 
ratio, they, in essence, used the simplified set of scaling parameters. Video analysis of bubble 
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O 

O 

eruptions at the bed surface were used to determine the cross-sectional average for bubble diameter, 
bubble diameter distribution and radial distribution of superficial bubble velocity. Similarity was 
achieved in these hydrodynamic parameters when bed Froude number, density ratio and the ratio 
of superficial to minimum fluidization velocities were matched. 

Horio et al. (1986b) verified the bubbling bed scaling laws of Horio et al. (1986a) for solid mixing 
and segregation. Sand was used as a bed material in straight and tapered bed geometries. A bed 
sectioning technique was used to measure the transient radial dispersion coefficient and the 
distribution of float tracers. They concluded that bed mixing and the behavior of floating bodies 
obey the scaling laws in both straight and tapered beds. The solid-to-gas density ratio was held 
constant in the tests, satisfying the simplified set of scaling laws. The particle Reynolds numbers 
(Reap) were approximately unity or less. 

Newby & Keairns (1986) made bubbling bed scaling comparisons between two cold models using 
the full set of scaling laws. One bed fluidized two different 200 #m glass powders using ambient 
air. The second bed, which was a half-scale model of the first, used pressurized air to fluidize 100 #m 
steel powder. High-speed movies showed good agreement between the non-dimensional bubble 
frequencies in the two beds. Figure 11 is a plot of the non-dimensional bubble frequencies as a 
function of bed Froude number. They also found reasonably good agreement between the 
non-dimensional amplitudes of the pressure fluctuations in the beds. 

Zhang & Yang (1987) carried out scaling comparisons between two two-dimensional beds with 
ug/gD and uo/Umr matched between them. They also inadvertently kept the solid-to-gas density ratio 
constant; thus they matched the simplified scaling parameters. They found through photographs 
that the beds appeared qualitatively similar. The beds also had similar dimensionless freeboard 
entrainment rates and dimensionless bed heights over a range of uo/Umf. 

Roy & Davidson (1989) considered the validity of the full and viscous limit scaling laws 
at elevated pressures and temperatures. The non-dimensional dominant frequency and amplitude 
of the pressure drop fluctuations were used as the basis of the comparison. They concluded 
that when the full set of scaling parameters is matched similarity is achieved. They also suggested 
that it is not necessary to match the density ratio (Ps/Pf) and dp/D--viscous limit scaling--for 
particle Reynolds numbers (Reap) less than 30. Although, the run with Red, of 33 had the 
same density ratio as the low Reap runs. These conclusions may be open to different interpretations. 



366 

. o  

e~ 

m 

2.8 

2.4 

2.0 

1.6 

Hot bed 
i. i 

Mean = 0 . 8 8 7  
Std. dee, = 0.544 

1 . 2  

0.4 

o ' Z 1 
0 I 2 3 4 

L.  R .  G L I C K S M A N  et aL 

Cold bed (iron gri t)  

Mean = 0 .841  
Std, dee. = 0.408 

p 

0 l 2 
I 
3 

Different ia l  p ressure ,  AP/(p=u . 2) 

560 

480 

I 

I 

t 

I 

t 

I 

Hot bed 

. . . .  Cold bed (iron grit) 

// 400 

,,/ , \  
.'~ ~ 

"~ 320 I 

\ 

I 

160 ~,, 

; /  V, 

. . . . . .  I I I 1 i 
0 1 2 3 4 x 10 -3 

Frequency ,  fl(uo/d p) 

Figure 10. Compar ison o f  hot  and cold bed probability density and power spectral density distributions 
(Nicastro & Glicksman, 1984). 



DYNAMIC SIMILARITY IN FLUIDIZATION 367 

16 

14 

12 

I0  

8 -- 

6 -- 

4 -- 

2 -- 

0 

O l /2 -Sca le  uni t  with steel bal ls  
• Fu l l - sca le  uni t  ba l lo t in i  g lass  bal ls  

• Fu l l - sca le  uni t  f lexol i te  g lass  bal ls  

o 
0 

o 
o 

s lugg ing  
l imi t  . "  % 

" - . O  s lugg ing  

- .  _ _ _ T  o_ y _ 

I I I I 
0.02 0.04 0.06 0.08 0.10 0.12 0.14 

u/C-B'~ 

Figure 11. Comparison of non-dimensional bubble fre- 
quencies from two cold scaled models (Newby & Kearns, 

1986). 

0.03 - -  

0.02 - -  

0.01 - -  

A 
O 

o 

• A o 0 
OQ] 0 

2~ + ~o o 
+ + 

+ 
. ~  + + + 

• ~,~"÷+ + + + I  I 
0 0.10 0.20 0.30 

Uo/U t 

Figure 12. Comparison of dynamic pressure variance for 
three properly scaled beds and two mis-scaled beds in 
bubbling regime (Di Felice et al. 1992a). Properly scaled: I-q, 
laposorb;/k, sand; ©, bronze. Intentionally mis-scaled: +, 

iron; • sand. 

As shown in Table 4, the scaling parameters were neither matched closely nor varied in a systematic 
manner. 

Almstedt & Zakkay (1990) made scaling comparisons between a hot PFBC and a pressurized 
cold scale model using the full set of scaling laws. A capacitance probe was used to measure the 
mean values of the bubble frequency, pierced length, bubble rise velocity and bubble volume 
fraction. Scaling comparisons were made using the dimensionless form of these dependent 
hydrodynamic parameters. Three different bed materials were used in the cold bed: Olivine sand 
and two different size distributions of the hot-bed material, one properly scaled and one out of 
scale. The sand had a lower sphericity and higher density than the hot-bed material making it 
possible to investigate the sensitivity of the scaling to small variations in the density ratio and 
particle sphericity. The out-of-scale hot-bed material was also used to illustrate the sensitivity of 
the scaling to the D/dp parameter. The non-dimensional form of the capacitance probe measure- 
ments agreed within 25% for the sand and the properly scaled hot-bed material; the agreement was 
best in the upper part of the bed. The properly scaled hot-bed material showed only slightly better 
agreement than that for the sand, but the mismatch in the density ratio and the sphericity for the 
sand was small. The improperly scaled hot-bed material had a maximum deviation of 38% from 
the hydrodynamics of the hot-bed combustor. They concluded that behavior which is hydrodynam- 
ically similar to that of a pressurized fluidized bed combustor can be achieved using a properly 
scaled cold model. 

Di Felice et al. (1992a) investigated the validity of the full set of scaling laws for bubbling and 
slugging fluidized beds. They used an experimental facility which permitted the pressurization of 
different diameter test sections to match the scaling parameters. Minimum fluidization measure- 
ments, video measurements of bed expansion and pressure fluctuation data were used to compare 
the similarity of five different bed configurations. Three of the beds were scaled properly, the fourth 
had a mismatched particle sphericity and the fifth bed was purposefully misscaled relative to the 
others (see table 4). The voidage at minimum fluidization was found to be the same for all the beds 
except the one with the different particle sphericity. In the bubbling regime, good agreement in the 
non-dimensional bed expansion measurements was obtained for all but the bed with the misscaled 
particle sphericity. The lower particle sphericity increased Umf for the system which effectively shifted 
the bed expansion curve for this case. The pressure fluctuations for the three properly scaled beds 
in the bubbling regime showed good agreement while the misscaled beds exhibited poor agreement 
with the other three. Figure 12 is a plot of the dimensionless dynamic pressure variance for the 
five beds in the bubbling regime. The two sets of data which deviate from the other three correspond 
to the misscaled beds. 

MF 20/7 Sup~W 
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In the slugging regime Di Felice et al. (1992a) found that the bed expansion characteristics were 
similar to those in the bubbling regime, but the pressure fluctuation characteristics for all five beds 
were in poor agreement with each other. Figure 13 is the plot of the dimensionless dynamic pressure 
variance for the five beds in the slugging regime. They attributed this to the importance of particle 
material properties and particle-particle interactions which are not accounted for in the full set of 
scaling laws. 

Di Felice et al. (1992b) evaluated the full set of scaling laws for three different Geldart powder 
categories (A, B and D) in the bubbling and slugging fluidization regimes. Pressure fluctuations 
were used as the basis for the scaling comparisons. In the bubbling regime, the RMS and dominant 
frequencies of the pressure fluctuations showed good agreement for all three powder categories. 
Only Geldart groups B and D were considered in the slugging regime. They exhibited fair agreement 
in the RMS of their pressure fluctuations, but their dominant frequencies agreed poorly. They 
found that the full set of scaling laws are valid for bubbling beds fluidizing powders in Geldart 
groups A, B and D. They also concluded that the full set of scaling laws should not be used for 
slugging beds where particle-particle interactions are also thought to be important. 

7.2. Experimental Verification o f  Scaling for  Circulating Fluidized Beds 

Horio et al. (1989) experimentally verified their proposed circulating fluidized bed scaling laws. 
The solid-to-gas density ratio was not varied in the tests, thus they effectively verified the simplified 
set of scaling laws. Two cold scaled CFBs, fluidized using ambient air, were used in the verification. 
Good agreement in the axial solid fraction profiles was obtained for most of the conditions tested. 
A "choking-like transition" was found to occur for cases with higher solids fluxes and lower gas 
superficial velocites. A discrepancy in the "choking" transition point for the two beds was 
attributed to differences in the geometry of the bed exit and the solids recycle lines. The transition 
point was found to be very sensitive to the particle size ratio. An optical probe was used to verify 
similarity in the annular flow structures and the cluster velocities. 

Ishii & Murakami (1991) evaluated Horio et al.'s (1989) CFB scaling relationships using two cold 
CFB models. Solids flux, pressure drop and optical probe measurements were used to measure a 
large number of hydrodynamic parameters to serve as the basis for the comparison. Fair to good 
similarity was obtained between the beds. Dependent hydrodynamic parameters such as the 
pressure drop and pressure fluctuation characteristics, cluster length and voidage, and the core 
diameter were compared between the two beds. The gas-to-solid density ratio was not varied 
between the beds. As seen in table 5, the dimensionless solids flux decreased as the superficial 
velocity was increased because the solids flux was held constant. 
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Tsukada et al. (1991) applied Horio et al.'s (1989) CFB scaling laws at several different elevated 
pressures (viscous limit scaling laws). A single bed and bed material were used in the study. A 
pressure vessel was used to vary the gas pressure. The bed was fluidized with ambient temperature 
air at three different pressures (0.1, 0.18 and 0.35 MPa). Axial solid fraction profiles and optical 
probe measurements were used as the basis for their similarity comparison. They found that as the 
pressure was increased the axial solid fraction profile changed, indicating a change in the 
hydrodynamics. It was suggested that the effect on the axial solid fraction profile could be due to 
reaching a Reynolds number limit, e.g. the upper boundary for the viscous limit. They also suggest 
that it could be due to a change in gas bypassing between the riser and the downcomer. The only 
parameter which was not matched in this study which had been matched in previous verifications 
of Horio et al.'s (1989) scaling relationships is the gas-to-solid density ratio. It is likely based on 
the recent results of Glicksman et al. (1993b) that this led to the influence of the pressure level on 
the bed hydrodynamics. 

Glicksman et al. (1991a) made scaling comparisons between an experimental circulating fluidized 
bed combustor and a scaled cold model based on the full set of scaling laws. The time-resolved 
pressure fluctuations and the time-averaged pressure drop were measured. Due to uncertainties in 
the hot-bed solid circulation measurements, the cold-bed solids flux was adjusted until the average 
bed solid fraction matched that of the hot bed. The vertical solid fraction profiles, the probability 
density function and the Fourier transform of the pressure fluctuations were compared between 
the hot and cold bed. Good agreement was obtained between the vertical solid fraction profiles 
except near the top of the beds. It was suggested that the differences in the solid fraction profiles 
at the top of the bed could be due to protrusions or wall roughness in the hot bed which were not 
modeled in the cold bed. Good agreement was also obtained in the comparison of the probability 
density distribution and the Fourier transform of the pressure fluctuations. 

Chang & Louge (1992) carried out tests on a circulating bed in which they could vary the gas 
composition. By combining this with particles of different density and size they were able to scale 
a series of different size hot commercial beds with diameters up to five times larger than the cold 
bed. Comparisons between glass and plastic particles show identical mean vertical solids fraction 
profiles. The corresponding pressure fluctuations for plastic and glass are found to scale with 
psg~pdv; one would expect the pressure fluctuations to scale with psu 2. This is probably an artifice 
of the experimental design since Fr 2 = u2/g~pdp was matched in the comparisons where as Froude 
number based on bed diameter could not be matched since the experimental bed diameter was fixed 
in the tests. The inability to alter the bed diameter also made it impossible to match the D/dp scaling 
parameter. Chang & Louge matched a modified form of the full set of scaling laws. Particle 
sphericity is not explicitly included as an independent parameter, rather it is included with the 
particle diameter based on a combination of the gas to particle drag coefficient. Their modified 
parameters are: 

F r * -  Uo L * -  D M -  G~ R=P--~ and Ar*-P'Pg(dPdp)3g 
g dp' dp ' psuo' Pr 

The values of the parameters matched for scaling are presented in the "Other Parameters" column 
of table 5. Steel and glass particles were also compared. The similarity using steel and glass was 
poor because the bed using the steel particles was choked while the bed with glass particles was 
not. Yang's (1983) correlation indicates that choking is a strong function of the Froude number 
based on bed diameter (Fro). Fro could not be matched between the beds which caused them to 
choke under different conditions. 

Glicksman et al. (1993a) evaluated the full set of scaling laws for circulating fluidized beds. Solid 
fraction data were obtained from the 2.5 MWth Studsvik CFB prototype. The full set of scaling 
laws were evaluated through solid fraction profile comparisons between Studsvik and a one-quarter 
scale cold model. Fairly good agreement was obtained; the profiles most closely matched in the 
top of the beds. Differences between the profiles were attributed to uncertainty in the hot-bed solid 
flux measurements and to the mismatch in the solid-to-gas density ratio. 

The viscous limit scaling laws were also evaluated by Glicksman et aL (1993b) in a series of two 
tests using circulating beds. Scaling was attempted between glass/steel and glass/plastic (i.e. 



370 L.R. GLICKSMAN et  al. 

O 

o 

lO0 

10 

1 

0.1 

i Hot bed data: 

~ u ° = 6.07 m/s 

1 ~  G s = 10.2 kg/m2s 

. "X % Primary air = 49.0 

o.o~ I J I I I I I I 
0 10 20 30 40 50 60 70 80 

Bed he igh t  (%) 

Figure 15. Solid fraction profile comparisons based on the simplified and the full set of  scaling laws 
(Glicksman et al., 1993b). 
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different density ratios) in the same bed. The average solid fraction profiles, probability density 
functions, and power spectral densities were all in poor agreement. Figure 14 is a sample solid 
fraction profile comparison based on viscous limit scaling. It is believed the beds were operating 
near the point of incipient choking condition as predicted by the Yang (1983) correlation. Because 
this correlation indicates that choking is a strong function of the solid-to-gas density ratio, it was 
concluded that the viscous limit scaling parameters are unable to model bed hydrodynamics near 
the boundary between different flow regimes. They concluded that since low u0 is required for the 
viscous limit scaling to be valid while sufficiently high u0 is required to prevent choking, the 
applicability of the viscous limit scaling parameters for CFBs is limited. It was suggested that these 
scaling parameters may have a wider range of validity in bubbling beds. 

The simplified scaling laws were used by Glicksman et al. (1993b) to compare two geometrically 
similar beds one having linear dimensions four times larger than the other. In one series of tests 
properly sized plastic particles were used in both beds, in another test series glass particles were 
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used in the two beds. The average solid fraction profiles showed excellent agreement. The 
probability density functions and power spectral densities also agreed well. In contrast to the 
viscous limit scaling results, the simplified scaling laws gave good agreement even for conditions 
where Yang's (1983) correlation predicted the bed was choked. 

Glicksman et aL (1993b) verified the simplified scaling laws for hot beds by comparing the solid 
fraction profiles for the Studsvik bed, the one-quarter scale cold model, and a one-sixteenth scale 
cold model. The average solid fraction profiles were in good agreement for most of the conditions 
tested. The agreement was excellent between the one-quarter scale cold model, which utilized the 
full set of scaling laws, and the one-sixteenth scale model which utilized the simplified set of sealing 
laws. Thus, any disagreement between the Studsvik bed and the one-sixteenth scale model is not 
due to the simplifications of the full set of scaling laws. The density ratio was not matched exactly 
between the hot bed and the two cold beds which may have affected the agreement. Figure 15 
provides a typical comparison of the solid fraction profiles in the three beds. The authors concluded 
that the simplified set of scaling laws, which includes the solid-to-gas density ratio, gives acceptable 
results over a wide range of particle densities and bed sizes, even when the length ratio is as small 
as one-sixteenth. 

8. A P P L I C A T I O N S  O F  S C A L I N G  T O  C O M M E R C I A L  F L U I D I Z E D  B E D  U N I T S  

A substantial number of experimental investigations have demonstrated the validity of scaling. 
This has increased awareness of the concept and confidence in its application. Although 
applications to commercial designs have been undertaken, unfortunately only a modest number 
have been documented in the open literature. 

Scaling has many useful applications. The dynamic characteristics of different bed designs 
can be quickly compared. The influence of bed diameter on hydrodynamic behavior can be 
studied by the use of several different models. The models allow easy experimental examination 
of existing operating characteristics. The beds also can be used to quickly confirm the influence 
of proposed modifications. Since the models operate at ambient conditions, it is possible to 
instrument them to observe detailed behavior. This allows a better understanding of the 
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Figure 18(a). Caption overleaf. 
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Figure 18(c) 
Figure 18. Tube configurations used for bed expansion studies. Note: all dimensions in cm scaled to 

equivalent sizes in the combustor. 

f undamen ta l  physics  as well as the ident i f icat ion o f  h y d r o d y n a m i c  factors  needed for  p rope r  

cor re la t ion  o f  per formance .  

8.1. Bubbling Beds 

The  ear l ies t  scal ing studies were di rected at  a tmospher ic  bubbl ing  bed combus tors .  To  date,  a 

rich var ie ty  o f  quest ions  have been addressed.  
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Jones & Glicksman (1986) constructed a model of the 20 MW bubbling bed pilot plant jointly 
sponsored by the Tennessee Valley Authority and the Electric Power Research Institute (EPRI) 
at Paducah, Kentucky. Figure 16 shows a photograph of the model of the in-bed tubes installed 
in the scale model. The model which is roughly 100 x 120 cm in cross section simulates two-thirds 
of the entire 20 MW pilot plant. Care was taken to carefully match the pilot plant tube bundle 
geometry and distributor design. Steel grit particles with the same dimensionless size distribution 
and sphericity as the hot bed material were used. The full set of scaling parameters was matched 
in the model and the combustor. The largest discrepancy was in the solid to gas density ratio which 
was 18% smaller in the model than the pilot plant. 

Optical probes were used to measure the bubble size, frequency and velocity within the dense 
bed. The bubble velocity for an actively bubbling bed was found to closely agree with the drift flux 
form proposed by Davidson & Harrison (1963). In contrast, the volumetric flow rate of the bubbles 
was found to be far less than that predicted by the two-phase hypothesis (figure 17). 

Later observations of this model showed that when bubbles erupt at the surface the accompa- 
nying gas flow has a velocity much higher than the bubble rise velocity (Glicksman & Piper 1987). 
This led to a mechanistic model for gas throughflow aided by the low resistance of the bubble cavity 
(Yule & Glicksman 1988) and an accurate prediction of bubble volume flow rate and bed expansion 
(Glicksman et al. 1991b). 

A major question in the design of a commercial sized bubbling bed is the need to identify part 
load operating techniques. While reducing the total combustion rate, it is desirable to keep bed 
operating temperature constant while reducing the heat transfer to the water filled tubes within the 
bed. One technique utilized the contraction of the bed which accompanies a decrease in superficial 
velocity. As the bed contracts, some of the tube rows are uncovered reducing the net heat transfer. 
The scale model allowed many different tube arrangements to be tested, figure 18 shows three of 
the six different tube bank configurations which were tested. The validity of the scaling technique 
was confirmed by a comparison of the bed expansion measured for the pilot plant and that found 
in the model equipped with the same tube bank geometry (figure 19). 

A second method to reduce load while maintaining constant bed temperature is to reduce the 
superficial velocity of a portion of the bed cross section to a value below umr. In this design the 
bed does not contain vertical partitions above the distributor. The scale model was used to 
determine the rate of growth of the fixed bed in the defluidized zone along with the heat transfer 
to tubes in that region. Figure 20 shows a typical pattern of particle accumulation in a slumped 
zone adjacent to an actively fluidized zone. Heat transfer coefficients are also shown. 

In a bubbling bed operating at high ratio of uo/umf there is a considerable amount of solids present 
in the freeboard, particularly near the bed surface in the so-called splash zone. The high density 
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Figure 19. Comparison of bubbling combustor bed expansion with MIT scale model (Glicksman et  al. 
1989). 
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Figure 20. Particle aocumutation in slumped zone adjacent to active bed: air velocity through active 
region = 151 crn/s; air velocity through slumped region = 7.3 cm/s; numbers  above heater are heat transfer 

coefficients in W/m2°C after 15-30 min. 

of  particles in the freeboard can cause substantial combustion and emission release in that zone 
as well as freeboard overheating if tubes are not present. The average density of  solids was 
measured in the freeboard of  the scale model of  the 20 MW pilot plant (Glicksman & Piper 1987). 
As shown in figure 21, the average density in the freeboard decreases exponentially with distance 
above the dense bed. Also shown on the figure is the predicted behavior based on a bubble eruption 
model (Glicksman & Yule 1991). 

The heat transfer from tubes in the freeboard was also measured for the 20 MW model. Figure 
22 shows a comparison of the measured overall heat transfer coefficient in the 20 MW pilot plant 
versus that predicted from the scale model test. 

Ackeskog et al. (1993) made the first heat transfer measurements in a scale model of  a pressurized 
bubbling bed combustor. These results shed light on the influence of  particle sizes, density and 
pressure levels on the fundamental mechanism of heat transfer, e.g. the increased importance of 
the gas convective component with increased pressure. 

A multisolids bed contains a mixture of large solids which are contained in a dense region at 
the bottom of  the bed and finer particles which recirculate through the bed and external cyclone. 
Ake & Glicksman (1989) used a cold scale model of a multisolids combustor to determine the dense 
bed expansion (see figure 23). The measured expansion in a properly scaled quarter-scale model 
using steel pellets to simulate the coarse particles and to satisfy solid to gas density ratio gave good 
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Figure 21. Density in freeboard of bubbling bed, present 
theory with D b equal to horizontal tube pitch, 3.9 cm [data 
of  Glicksman & Piper (1987), theory Glicksman & Yule 

(1991)]. 
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agreement with field data. It was also demonstrated that an improperly scaled cold model, using 
the same coarse material as the hot bed which gave incorrect gas to particle density ratio 
substantially overpredicted the bed expansion. 

Tube erosion has been observed in both atmospheric and pressurized bed combustors. 
The scaling analysis presented earlier can be used to construct an accurate hydrodynamic 
simulation of the commercial bed. This can be used to qualitatively investigate factors related 
to tube wear such as the location of highest wear around the circumference of an individual 
tube and the location within the bed of highest wear. Quantitative wear rates cannot be obtained 
from model tests unless the parameters governing both the hydrodynamics and the 
wear phenomena are matched between the model and the commercial bed. Figure 24 shows 
relative tube wear for the model of the TVA-EPRI 20 MW bubbling bed pilot plant. 

8.2. Circulating Fluidized Bed Applications 

As mentioned previously, Horio and co-workers have used scale models of circulating beds to 
assist in the formulation of fundamental understanding and quantitative relationships of hydrodyn- 
amics in circulating bed combustors. Models have been based on a clustering annular flow 
characterization. Experimental studies have included the use of fiber optic probes to determine 
vertical and lateral density profiles. In addition, innovative photographic techniques have been used 
to visualize the behavior of clusters in illuminated two-dimensional planes in the dilute region of 
a circulating bed (Horio et al. 1993). 

Chang & Louge (1992) carried out scaling experiments for circulating beds using the full set 
of scaling parameters. By use of dense gas, their experimental bed can simulate rather large 
pressurized beds. In his studies Louge has shown that in extreme cases, the coefficient of friction 
and possibly the coefficient of restitution of specially prepared particles can alter the bed 
hydrodynamics. 

Westphalen & Giicksman (1993) demonstrated close agreement between a scale model based on 
the full set of scaling relationships and a 2.5 MW~h circulating fluidized bed combustor operating 
at atmospheric pressure. Bed exit geometry and wall inserts and steps are shown to substantially 
alter the vertical density distribution in the bed. 
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9. HEAT TRANSFER 

9.1. Introduction 

Heat transfer is an important rate process in many fluidized bed systems. In bubbling beds, 
internal heat transfer tubes are used to control the bed temperature and serve as a source of steam 
generation in fluidized bed combustors. In circulating beds heat transfer is primarily to the walls 
of the bed. As is the case for bed hydrodynamics, designers need means to project heat transfer 
results from laboratory models to larger commercial units. Moreover, the models must produce 
heat transfer conditions which are similar to the commercial conditions to insure the applicability 
of the model results. 

The heat transfer behavior is closely tied to the bed hydrodynamics. However, similarity of 
hydrodynamics does not guarantee similarity of heat transfer as well. This requires consideration 
of additional factors which will result in additional dimensionless parameters to be matched 
between the experimental model and the commercial bed. The addition of thermal parameters may 
preclude full similarity of all hydrodynamics and heat transfer parameters. We will approach the 
issue by first setting out the full set of governing parameters and then examining circumstances 
where this set can be relaxed. 

9.2. Governing Equations for Heat Transfer 

We will take a phenomenological view to the different heat transfer mechanisms and develop 
the set of governing dimensionless parameters by non-dimensionalizing the governing energy 
equations. We will not repeat the corresponding equations of motion which also bear on the 
problem since they have been developed in previous sections. Viewing the system as a continuum 
or as a collection of individual particles will yield similar forms for the parameters analogous 
to the results for hydrodynamics. Our attention will focus on heat transfer between a fluidized 
bed and an immersed heat transfer surface or a bounding wall. Typically, the heat transfer has 
been characterized as that due to particle convection, gas convection and thermal radiation. 
Particle convection is heat transfer due to the exchange of particles near the surface and the 
bed interior with their corresponding heat capacity. Gas convection is the heat transfer from 
the surface due to gas motion and its corresponding heat capacity. Operationally, gas convection 
is the balance of the convective heat transfer not ascribable to particle convection. For some 
cases the distinction between the two mechanisms is not precise. Radiation is a separate physical 
mechanism of heat transfer but it may interact with the other forms of heat transfer, particularly 
particle convection. 

The overall phenomenological model of heat transfer for either bubbling, slugging or circulating 
beds is generally agreed to consist of the intermittent contact of a rather dense group of particles 
in the form of an emulsion, packet or cluster, interspersed with periods of contact with a high 
voidage fluid phase, e.g. a bubble. The time averaged heat transfer coefficient can be represented 
a s ,  

h =fhv¢ + (1 -f)hgc [102] 

where h is the overall average heat transfer coefficient, hp~ represents the average heat transfer 
coefficient when the dense phase is in contact with the surface, hgc is the heat transfer under the 
dilute phase and f is the temporal or spatial average fraction of the surface area occupied by the 
dense phase. For high temperatures, radiation effects must be included in both the dense and dilute 
phases. 

The dense phase heat transfer is generally represented by a thermal resistance described by a 
renewal model for the emulsion (Mickley & Fairbanks 1955) which for short times is considered 
in series with a thermal resistance at the fluid interface between the dense phase and the wall 
(Baskakov 1964). 

(hpc)  i _~ h w  I ..{_ h e  I [103]  

where hw and h e are the wall and dense phase coefficients, respectively. 
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With the boundary conditions on temperature T = Tw at the bed wall and T = Tb far from the 
wall. In dimensionless form'i" 

V' 
--if-, ) [104] 

where kr is the fluid thermal conductivity. 
For a uniform emulsion or cluster with mean properties, 

h<a, a. ko Ipa :lF l-,o)p,c,, l u tlOSl 

where ~,, the effective thermal diffusivity of the cluster or emulsion, is expressed in terms of the 
emulsion properties, the effective emulsion conductivity, ke and solid specific heat cp. The time of 
contact is non-dimensionalized as ut/L or t'. Rewriting [105], 

hdp ~ i(1 -,o) scpsud . 
k r N l ~ q  Zkf tkf) [106]  

where Ee and t '  are set by the hydrodynamics. 
(pscpsud2)/(Lkf) is a dimensionless parameter which is the ratio of the thermal time constant of 

a particle to the time of contact set by the hydrodynamics. Note u is a characteristic velocity of 
particle clusters or bubbles in contact with the heat transfer surface. For bubbling beds the 
characteristic velocity is dependent on u0, for circulating beds it should be the cluster falling velocity 
at the wall. The ratio ke/kr for a uniform mixture of particles and fluid is found to be a function 
of the true particle conductivity, k,, the fluid conductivity and the void fraction, see for example, 
Gelperin & Einstein (1971) 

ke Pks Ee l r = l / r ,  [1071 

where it is shown that kdkf is a weak function of ks/kf. 
If  the bed is at high temperature and the fluid is a gas there will be radiant transfer between 

particles making up the media. For particles large compared to the wavelength of infrared radiation 
the radiant transfer within the media can be approximated by an effective conductivity, k r (Chen 
& Churchill 1963; Glicksman & Decker 1982) as 

k, ,~, ]dptrT 3 [108] 

which should be added to k e in [106]. This leads to an additional dimensionless parameter 
dp((aT3)/(kr) where a is the Stefan Boltzmann constant and T is the absolute temperature. If the 
particle diameter approaches the wavelength of the radiation additional parameters enter, primarily 
the complex index of refraction of the particles and the fluid and the particle shape. These will be 
omitted in this treatment. 

From the foregoing [106], [107] and [108] we can establish the functional relationship, 

h = f  t',ee, Lkf 'kr '  k-~ _l [1091 

The additional resistance at the wall, at low temperature and moderate particle size, can be 
approximated by a conduction resistance through a gas layer which is some fraction of a particle 
diameter. Such a gas layer may represent the actual situation at the wall of a circulating bed (Lints 
& Glicksman 1993a) whereas in a bubbling bed it is a simple approximation for contact resistance 
(Gloski et al. 1984). For larger particles and high slip velocities near the wall, the gas conduction 
term may be augmented by a convection term, given as a function of particle Reynolds number 
(see Glicksman & Decker 1982) for bubbling beds or a function of Archimedes number (Baskakov 

[To non-dimensionalize this a mean value of dp is used, it is not clear if this should be averaged in the same way as the 
mean value used for the hydrodynamics. This point is moot  if the same dimensionless size distribution is used for the 
model and the full size bed. 
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& Suprun 1972) which can be related to the Reynolds number at Umf. The overall equation for the 
wall coefficient of heat transfer with radiation included becomes 

hwdp-6-~ +C°ReapPrf+ kf 1 1 T~J kf /, 1 + [110] 

~ + c n  

where Pr is the Prandtl number and Ew and EB are the emissivity of the wall and the effective 
emissivity of the medium, respectively. The latter is determined by the surface properties of the 
particles and the geometry of the dense medium. 6, the dimensionless particle to wall spacing, and 
Co are constants which should be hydrodynamic functions. Radiation enters through the 
dimensionless radiation conduction term, which also appeared in [109], along with the ratio of 
absolute temperatures. If the wall and bed are close in absolute temperatures this factor can be 
omitted and the radiation conduction term can be expressed using the mean temperature between 
the bed and the heat transfer surface. Note that Te is an intermediate temperature between Tw and 
TB which can be found once hw and he are determined. Thus TwIT e should be a function of the 
factors controlling hw and h e along with Tw/T R. 

Thus, we can write 

- f  Rea r Prr, k ~ - '  TB' ~w, ~B, Ee [11 1] 

Combining these developments, the overall particle convection heat transfer coefficient can be 
expressed as, 

hp dp k~ rw ] - f~  p~cp~ud2 Rea, Prf, , ~w %, bed hydrodynamics [112] 
kf ~ t~ Lkf ' kf' kf ' TB ' 

For low temperatures, where radiation is unimportant the last four dimensionless terms can be 
omitted. For moderate particle Reynolds numbers, below approx. 10-30, the product of Reynolds 
number and Prandtl number is unimportant for bubbling beds. The ratio of particle to gas 
conductivity has a modest influence on the ratio of effective emulsion to gas conductivity. For a 
gas fluidized bed with non-metallic particles, the emulsion to gas conductivity ratio at a fixed 
emulsion void fraction can be taken as approximately constant. For very large particles and short 
contact times at the heat transfer surface, e.g. 1 mm particles with a contact time of a second or 
less, the first term in [112] is unimportant since the particles remain close to TB during their contact 
time. For smaller particles or longer contact time, this term is a key parameter influencing h r .  For 
all cases it is necessary to properly simulate the bed hydrodynamics. 

9.3. Gas Convection Component 
For dense bubbling or circulating beds, particle convection with radiation included dominates the 
heat overall transfer. Van Heerden et al. (1953) and Baskakov & Suprun (1972) carried out parallel 
mass and heat transfer experiments for gas fluidized bubbling beds, Ebert et al. (1990) did a similar 
experiment for air fluidized circulating beds to establish that particle convective effects dominate 
over gas convection. Here gas convection includes both gas convective effects at the surface in the 
vicinity of clusters as well as gas convection for surfaces covered by a dilute mixture of particles 
and fluid. For liquid fluidized beds and for circulating beds or freeboard regions of a bubbling bed 
where the particle concentration is very low, fluid convective heat transfer becomes important. 

Lints & Glicksman (1993b) analyzed extensive data for a circulating bed which indicated that 
the gas convection can be approximated by the single phase heat transfer. This would suggest that 

hgcDkr _ f [ ~ f D ,  Prr, void geometry I [! 13] 

where D is a typical system dimension, e.g. the bed diameter or heat transfer surface length. For 
bubbling beds, the bubble length along the heat transfer surface might be a more logical dimension, 
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but the bubble length as well as any other void geometry should be related to D through the 
hydrodynamic parameters. Another possible factor is the gas turbulence level near the surface. If 
there are particles mixed within the void then an effective specific heat and gas conductivity should 
be used in the Prandtl number based on the mass fraction of solids and fluid. 

9.4. Heat Transfer Surface Geometry 

For particular heat transfer surface designs the surface geometry may influence the heat transfer 
and possibly the bed hydrodynamics. For tube bundles within a bubbling fluidized bed the 
inter-tube spacing may be important as well as the bundle orientation and location relative to the 
distributor, the bed wall or the free surface. Thus, the geometric ratios of tube spacing to tube 
diameter and tube vertical location to bed height must be scaled. 

For finned surfaces the usual fin efficiency parameter, hwperimeter/k~nA . . . . . . .  tion, holds as well 
as the ratio of fin spacing to particle diameter for tightly spaced fins (Glicksman & Modlin 1986). 
For non-circular horizontal tubes, the tube profile can influence heat transfer. Recent results 
suggest that the shape of a circulating bed wall (Wu et al. 1989) and its roughness (Glicksman et 
al. 1993c) can influence the bed to wall heat transfer. This would require a dimensionless wall 
roughness in the scaled model which matched the target bed. 

9.5. Heat Transfer Scaling Procedures 

Ideally, heat transfer measurements should be carried out in a scaled bed which simultaneously 
matches all of the hydrodynamic scaling parameters as well as all of the heat transfer parameters 
with the target bed. With proper hydrodynamic scaling the wall coverage fraction, average distance 
between the cluster or emulsion and the wall, the emulsion void fraction and the average time of 
emulsion contact with the heat transfer surface will be properly simulated. All of the above factors 
enter into the heat transfer mechanism. However, the heat transfer is also dependent on the thermal 
parameters to establish full similarity. In most instances, it is usually not possible to simultaneously 
match all of the hydrodynamic and thermal parameters. For example, the ratio of thermal to 
hydrodynamic time constants, the first term in [112], involves both hydrodynamic and thermal 
parameters. The hydrodynamic parameters pp, U, L and dp are used to satisfy flow similarity while 
kr is set by the choice of fluid. Thus, Cp of the solid is the only free parameter and it is limited by 
the choice of solids which satisfy hydrodynamic similarity. 

To facilitate thermal scaling, the order of magnitudes in which each of the parameters can be 
neglected is given in table 6. These considerations are based on the mechanistic model for heat 
transfer presented earlier. 

When rT/zr~ is large the thermal time constant of particles is larger than the contact time at the 
heat transfer surface. The particle temperature remains approximately at the bulk bed temperature 
during the contact period and exact match of rT/ZH is unnecessary, although it is important that 
the model also has rT/ZH large. Particular limiting values for this parameter depend on the specific 
flow regime. For horizontal tubes in bubbling beds the hydrodynamic time constant should be the 
average period between bubble passage at a given location. For heat transfer to the wall of a 

Table 6. Range where dimensionless thermal parameters can be 
neglected 

Parameter Modest influence in these ranges 
ZT Pp Cp ud2p 

>>1 
r H LKf 

ks/kf ~ 1, weak effect in other ranges 

Redp Pr Reap Pr < 10 for bubbling beds 
dp,T3w 

~.1 
kf 

Tw/Ta ~ l  and  dpaT~v ~ 1 
kf 

dp~ r~w 
Ew t , £p - -  ~. 1 rf 



380 L R. G L I C K S M A N  et aL 

circulating bed ZH is the particle or cluster contact time at the wall which can be approximated by 
taking the particle velocity at the wall as 1-2 m/s and the length of vertical travel generally believed 
to be between 10 and 100 cm. 

As mentioned above the effective conductivity of the emulsion is a weak function of kp/kf; when 
this ratio is near unity the effective conductivity is approximately equal to the fluid conductivity. 
Redp Pr enters in the gas convection which augments particle to wall heat transfer. It is only 
important at elevated pressure and large particle size. 

At low temperatures or for high conductivity fluids where the radiation-conduction ratio is 
small, radiation is unimportant eliminating the need to match any of the radiation parameters. 

Note, when one or more parameters can be neglected in the target bed to be scaled it is important 
to construct the experimental model so that the corresponding dimensionless parameters are in the 
range where they can also be neglected. 

9.6. Experimental Results 

9.6.1. Incomplete thermal scaling 

Unfortunately, even when some of the thermal parameters can be neglected, it may be unlikely 
that proper scaling of all of  the remaining parameters can be achieved. In that case, the 
experimental scaling results must be combined with modeling to achieve results which apply to the 
commercial bed. 

At one extreme, only the hydrodynamic parameters are matched between model and full sized 
bed, while none of the thermal parameters are matched. Ackeskog et al. (1993) compared heat 
transfer measurements in a hot pressurized combustor and those in a cold pressurized model scaled 
using the full set of  hydrodynamic scaling parameters. They made thermal measurements for a tube 
bundle and for heat transfer probes inserted in the bed. No attempt was made to match 
dimensionless heat transfer parameters. Rather, the authors used a model in the literature for the 
particle convective component and they assumed the hot bed and cold model had the same bed 
voidage. This allowed a prediction of the particle convection based on the cold bed results. The 
heat transfer model combined with the heat transfer results from the scaled bed were used to derive 
the hydrodynamic factors used in the model. These factors were used in applying the model to the 
hot bed. This technique depends on the validity of the heat transfer model. The comparison of the 
hot to cold results also requires an estimate of the radiative transfer. The authors obtained 
reasonable agreements betweeen the hot and cold results with a maximum deviation of  19%. 
However some of the spatial variations of heat transfer differed between hot data and prediction 
based on the cold bed results. 

9.6.2. Comparison between cold beds 
Glicksman et al. (1993c) carried out heat transfer experiments on two geometrically similar 

beds whose linear dimensions differed by a factor of four. Three separate heat transfer panels 
were installed on one wall of the bed. The beds were both cold and were hydrodynamically 
scaled to match all of the simplified scaling parameters. By using the same particle material 
and gas at the same temperature in both beds the ratio of thermal to hydrodynamic time constants 
are also held constant. For  small particles, Umf can be approximated using only the viscous 
term of  the Ergun equation, thus the ratio of  the thermal, Tx, to hydrodynamic times, rH, can be 
given as, 

2 2 rx pscpudp_(Cp~psudp cpFrpsgd~ Cps~(Fr)urn f [] 14] 
c u kf u 

In the simplified hydrodynamic scaling, U / U m f  , Fr and Ps/Pr are held constant. Thus, in the work 
of Glicksman et al. (1993c), by using the same solid between the two beds, rr/ZH and kp/kr were 
held constant between the two beds. Both beds were at room temperature so that radiation is 
negligible. The convection augmentation Rep Prr is also small. Figure 25 shows a comparison of 
the Nusselt thermal scaling relationships when all important parameters are matched between the 
two beds. 
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Figure 25. Comparison of Nusselt numbers between properly scaled circulating fluidized beds at several 
bed heights. 

In general cases where the simplified scaling relationships are used and Umr/U, Pr/Ps and Fr are 
held constant then for small particles, 

"rT'-'Cps(Cp~ Fr Umf= CP---~' Prf Fr umf [115] 
17 a Cpf \ k / f  u 0 Cpf u 0 

and constancy of  rT/ZH requires the use of  fluids and solids with identical values of the product 
cps/cpf Prf. The Prandtl number remains constant at a value near 0.7 for most gases over a wide 
range of  temperatures. To maintain Zr/Z H constant between the model and target bed, the ratio 
of particle to fluid specific heat must be equal when the particles are small enough for Umr to be 
governed by the viscous term in the Ergun equation. Note, at the other limit of large particles ZT/ZH 
will become larger than unity and will not remain an important factor in the heat transfer. 

When using a low temperature model to obtain heat transfer data to be applied to a bed fluidized 
with hot gas, it is unlikely that the radiation conduction parameter can be matched. If 
hydrodynamic similarity holds, the dimensionless wall coverage, wall to particle spacing and 
emulsion void fraction should be matched. At this point it is necessary to introduce a heat transfer 
model. Using a renewal model as described in the previous section one must determine the most 
important thermal parameters. For large heat transfer surfaces and small particle diameters typical 
of  the walls of circulating beds, the emulsion resistance, [106], should predominate over the wall 
resistance. This becomes, with radiation, [108], included in the effective conductivity, 

hedv= 1 (1-Ee)psCp~Ud2 (ke~_~., dp~rT3~ 
kf x~ ~ Lkr ~kfJ x~ ~ (1-(:e) Cp---~prfUm--~fFrcpr u 1 -  +9 kr J [116] 

Thus in the case of  the simplified scaling laws, which results in equal values of  t', heat transfer 
similarity requires an equality between the terms, 

8dpor3 ] r  pke7 FPr/%"~(ke q = / P r r - - - - /  [117] 
L kCp/\kf 9 kr ,]]hotwrget L Dprkdooldmodel 

Note, in this case it is unnecessary to also hold an additional term kp/kf constant. If the cold bed 
parameter given by the right-hand side of  [117] is not equal to the hot bed parameter, then the 
measured Nusselt number in the cold bed must be adjusted by the square root of the ratio of the 
left hand side term to the right-hand side term in [117]. 

At the other extreme, for large particles with short residence time, e.g. a large particle bubbling 
bed with rapid particle exchange at the heat transfer surface, the surface resistance, [110], should 
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predominate. Results for Nusselt number in a low temperature model should be adjusted by the 
ratio of  hwdp/kr between the hot and cold bed, given by [110] to obtain a prediction of  the hot bed 
Nusselt number. 

Results for Nusselt number in a low temperature model should be adjusted by the ratio of 
((Nu)whot bed)/((Nu)wcold model) to obtain a prediction of the hot bed Nusselt number. 

In both the case of  the large particle and small particle limits a measurement or estimate of the 
percent of surface covered by dilute phase must be made. For the cold bed the dilute phase heat 
transfer will be small unlessfbecomes very small. For the hot bed the heat transfer coefficient under 
the dilute phase is given by radiation between the heat transfer surface and the bulk bed. This 
correction is approximate only i f f  is not well known. 

10. C O N C L U S I O N S  

Similitude allows a fluidized bed at ambient conditions to model the behavior of  a com- 
mercial bed at elevated temperature and pressure. Numerous experimental investigations 
have confirmed the validity of the dynamic modeling for atmospheric and pressurized bubbling 
beds. Results for circulating beds indicate that the scaling laws also apply for that flow regime. 
It is important to match the dimensionless hydrodynamic parameters as well as maintaining 
geometric similarity. There are some questions that additional dimensional parameters may be 
needed for slugging beds and to characterize the stability limits between minimum fluidization 
and minimum bubbling limits. Verification of the scaling laws for pressurized circulating beds 
has not been attempted nor has the application to liquid fluidized or three-phased beds been 
made. 

The use of  small, properly scaled laboratory models should facilitate the design of larger 
commercial beds based on results of smaller pilot plants. The models can be used to shed light on 
particle and gas dynamics, mixing processes, wear of  in-bed components and heat transfer within 
the bed, among others. Substantial design modifications can be quickly tested to resolve 
performance anomalies of  existing commercial beds. 

If  atmospheric air is used as the fluidizing gas, models of  hot atmospheric beds are substantially 
smaller than the commercial beds. Models of pressurized beds approach the commercial beds in 
size if the full set of  scaling parameters are retained. Models based on a simplified set of scaling 
parameters have shown in preliminary tests to yield models with characteristics equivalent to 
models based on the full set. The simplified set allows the models to be significantly smaller than 
the commercial beds even for hot pressurized beds. This offers the hope of modest laboratory 
models which can simulate very large commercial units. Further confirmation of the simplified 
scaling models is required. 

As an alternative, cold models can be fluidized with gases denser than air or the models can be 
pressurized; either technique will result in smaller models. 

The scaling laws can be extended to model bed to wall heat transfer. These require one or more 
additional scaling parameter and/or a data analysis technique based on a mechanistic heat transfer 
model. Particle convection can be most easily modeled. Gas convection and radiation become more 
challenging. 

Similitude analysis not only allows the use of experimental models to simulate the dynamics of 
larger beds, it aids in the identification of governing dimensional parameters which should help 
shape the analysis and correlation of bed behavior. 

Modeling can also be extended to other phenomena such as wear or erosion of in-bed surfaces. 
Presently, modeling provides qualitative indications; proper formulation and modeling of wear 
phenomena should allow quantitative assessments to be made. 

10.1. Future Work 

The full set of scaling laws must be checked for cold scale models of hot circulating bed 
combustors to determine if use of the proper density ratio gives close agreement. 

The simplified scaling laws need to be verified for use with pressurized bubbling and circulating 
beds. Work in this direction is currently underway in the authors' laboratory. 
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The use of scaling to study size effects can resolve the effect of bed diameter on dynamical and 
heat transfer parameters. 
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